首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20943篇
  免费   3413篇
  国内免费   2388篇
化学   14499篇
晶体学   210篇
力学   1526篇
综合类   196篇
数学   2320篇
物理学   7993篇
  2024年   69篇
  2023年   401篇
  2022年   708篇
  2021年   799篇
  2020年   831篇
  2019年   797篇
  2018年   679篇
  2017年   586篇
  2016年   969篇
  2015年   1017篇
  2014年   1159篇
  2013年   1527篇
  2012年   1788篇
  2011年   1962篇
  2010年   1247篇
  2009年   1191篇
  2008年   1218篇
  2007年   1127篇
  2006年   1117篇
  2005年   929篇
  2004年   832篇
  2003年   613篇
  2002年   571篇
  2001年   504篇
  2000年   455篇
  1999年   431篇
  1998年   380篇
  1997年   323篇
  1996年   335篇
  1995年   319篇
  1994年   299篇
  1993年   232篇
  1992年   247篇
  1991年   205篇
  1990年   180篇
  1989年   152篇
  1988年   91篇
  1987年   89篇
  1986年   75篇
  1985年   75篇
  1984年   42篇
  1983年   44篇
  1982年   37篇
  1981年   22篇
  1980年   15篇
  1979年   8篇
  1977年   5篇
  1975年   6篇
  1969年   4篇
  1957年   8篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
The construction of stimuli‐responsive materials by using naturally occurring molecules as building blocks has received increasing attention owing to their bioavailability, biocompatibility, and biodegradability. Herein, a symmetrical azobenzene‐functionalized natural glycyrrhizic acid (trans‐ GAG ) was synthesized and could form stable supramolecular gels in DMSO/H2O and MeOH/H2O. Owing to transcis isomerization, this gel exhibited typical light‐responsive behavior that led to a reversible gel–sol transition accompanied by a variation in morphology and rheology. Additionally, this trans‐ GAG gel displayed a distinct injectable self‐healing property and outstanding biocompatibility. This work provides a simple yet rational strategy to fabricate stimuli‐responsive materials from naturally occurring, eco‐friendly molecules.  相似文献   
992.
Hierarchical MoS2@TiO2 heterojunctions were synthesized through a one‐step hydrothermal method by using protonic titanate nanosheets as the precursor. The TiO2 nanosheets prevent the aggregation of MoS2 and promote the carrier transfer efficiency, and thus enhance the photocatalytic and electrocatalytic activity of the nanostructured MoS2. The obtained MoS2@TiO2 has significantly enhanced photocatalytic activity in the degradation of rhodamine B (over 5.2 times compared with pure MoS2) and acetone (over 2.8 times compared with pure MoS2). MoS2@TiO2 is also beneficial for electrocatalytic hydrogen evolution (26 times compared with pure MoS2, based on the cathodic current density). This work offers a promising way to prevent the self‐aggregation of MoS2 and provides a new insight for the design of heterojunctions for materials with lattice mismatches.  相似文献   
993.
本文以1,4-雄烯二酮为起始原料,经羰基保护、溴代、异构化、羰基还原、环氧化、开环及脱保护7步反应以28.3%的总收率合成1α-羟基去氢表雄酮。该方法具有高效经济、技术可行、安全环保等优点,为1α-羟基去氢表雄酮的规模生产及维生素D类药物合成研究奠定理论基础。  相似文献   
994.
Reported here is a highly efficient 1,6-conjugate addition of fluorinated silyl enol ethers to para-quinone methides, allowing facile access to a range of β,β-diaryl α-fluorinated ketones with good to high yields. Fe(OTf)3 was identified as the optimal catalyst, with the loading of 3?mol%. Notably, this represent the first 1,6-conjugate addition with fluorinated silyl enol ethers. The synthetic potential of the resulting adducts is also demonstrated.  相似文献   
995.
In this study, we have successfully synthesized a new coumarin based fluorescent chemosensor 1, in which tren and quinolone are introduced as receptors for sequential recognition of Cu2+ and PPi. The structure of chemosensor 1 was characterized by 1H NMR, 13C NMR and ESI-HR-MS. Sensor 1 showed an obvious “on-off” fluorescence quenching response toward Cu2+, and the quenching efficiency reached a maximum of 99.6% with the addition of 20 equiv. of Cu2+. The 1-Cu2+ complex showed an “off-on” fluorescence enhancement response toward PPi over many competitive anions, especially HPO42? and H2PO4?. The detection limit of sensor 1 was 1.9?×?10?6?M to Cu2+ and 5.96?×?10?8?M to PPi. In addition, sensor 1 showed a 1:1 binding stoichiometry to Cu2+ and sensor 1-Cu2+ showed a 2: 1 binding stoichiometry to PPi in CH3CN/HEPES buffer medium (9:1 v/v, pH?=?7.4). The stable pH range of sensor 1 to Cu2+ and 1-Cu2+ to PPi was from 4 to 8.  相似文献   
996.
Oxygen activation plays a crucial role in many important chemical reactions such as oxidation of organic compounds and oxygen reduction. For developing highly active materials for oxygen activation, herein, we report an atomically dispersed Pt on WO3 nanoplates stabilized by in situ formed amorphous H2WO4 out‐layer and the mechanism for activating molecular oxygen. Experimental and theoretical studies demonstrate that the isolated Pt atoms coordinated with oxygen atoms from [WO6] and water of H2WO4, consequently leading to optimized surface electronic configuration and strong metal–support interaction (SMSI). In exemplified reactions of butanone oxidation sensing and oxygen reduction, the atomic Pt/WO3 hybrid exhibits superior activity than those of Pt nanoclusters/WO3 and bare WO3 as well as enhanced long‐term durability. This work will provide insight into the origin of activity and stability for atomically dispersed materials, thus promoting the development of highly efficient and durable single atom‐based catalysts.  相似文献   
997.
As a highly stable band gap semiconductor, antimonene is an intriguing two‐dimensional (2D) material in optoelectronics. However, its short layer distance and strong binding energy make it challenging to prepare high‐quality large 2D antimonene; therefore, its predicted tunable band gap has not been experimentally confirmed. Now, an approach to prepare smooth and large 2D antimonene with uniform layers that uses a pregrinding and subsequent sonication‐assisted liquid‐phase exfoliation process has been established. Mortar pregrinding provides a shear force along the layer surfaces, forming large, thin antimony plates, which can then easily be exfoliated into smooth, large antimonene, avoiding long sonication times and antimonene destruction. The resulting antimonene also enabled verification of the tunable band gap from 0.8 eV to 1.44 eV. Hole extraction and current enhancement by about 30 % occurred when the antimonene was used as a hole transport layer in perovskite solar cells.  相似文献   
998.
A combination of nuclear resonance vibrational spectroscopy (NRVS), FTIR spectroscopy, and DFT calculations was used to observe and characterize Fe?H/D bending modes in CrHydA1 [FeFe]‐hydrogenase Cys‐to‐Ser variant C169S. Mutagenesis of cysteine to serine at position 169 changes the functional group adjacent to the H‐cluster from a ‐SH to ‐OH, thus altering the proton transfer pathway. The catalytic activity of C169S is significantly reduced compared to that of native CrHydA1, presumably owing to less efficient proton transfer to the H‐cluster. This mutation enabled effective capture of a hydride/deuteride intermediate and facilitated direct detection of the Fe?H/D normal modes. We observed a significant shift to higher frequency in an Fe?H bending mode of the C169S variant, as compared to previous findings with reconstituted native and oxadithiolate (ODT)‐substituted CrHydA1. On the basis of DFT calculations, we propose that this shift is caused by the stronger interaction of the ‐OH group of C169S with the bridgehead ‐NH‐ moiety of the active site, as compared to that of the ‐SH group of C169 in the native enzyme.  相似文献   
999.
In this work, P2-Na0.6[Mg(II)0.3Mn(IV)0.7] O2 with inoxidizable elements (Na+, Mg2+ and Mn4+) except O2- was synthesized and investigated, which exhibited high reversible capacity (~210 mAh/g) with highly reversible ARR characteristic.  相似文献   
1000.
Stable copper nanoclusters (CuNCs) were prepared by utilizing D-penicillamine as both the stabilizer and reductant. The emission of the CuNCs (with excitation/emission peaks at 390/645 nm) is largely stabilized by coating with poly(sodium-p-styrenesulfonate) (PSS). Cytochrome c (Cyt c) quenches the fluorescence of the PSS-coated CuNCs, and this effect was exploited to design a quenchometric fluorometric assay for Cyt c. If trypsin is added to the loaded CuNCs, it will hydrolyze Cyt c to form peptide fragments, and fluorescence is gradually restored. A highly sensitive and fluorometric turn-off-on assay was constructed for sequential detection of Cyt c and trypsin. The linear ranges for Cyt c and trypsin are from 8.0 nM to 680 nM, and from 0.1 to 6.0 μg mL?1, and the lower detection limits are 0.83 nM and 20 ng mL?1 for Cyt c and trypsin, respectively.
Graphical abstract Schematic illustration of the fluorometric assay for trypsin based on the electron transfer between poly(p-styrenesulfonate)-protected copper nanoclusters (PSS-CuNCs) and cytochrome c (Cyt c).
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号