首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   229篇
  免费   3篇
  国内免费   2篇
化学   139篇
晶体学   2篇
力学   4篇
数学   53篇
物理学   36篇
  2022年   5篇
  2021年   4篇
  2020年   2篇
  2019年   4篇
  2018年   4篇
  2017年   1篇
  2016年   7篇
  2015年   8篇
  2014年   8篇
  2013年   23篇
  2012年   7篇
  2011年   8篇
  2010年   7篇
  2009年   18篇
  2008年   21篇
  2007年   15篇
  2006年   10篇
  2005年   7篇
  2004年   7篇
  2003年   8篇
  2002年   6篇
  2001年   4篇
  2000年   4篇
  1999年   2篇
  1998年   4篇
  1997年   2篇
  1996年   2篇
  1995年   3篇
  1993年   1篇
  1992年   7篇
  1991年   2篇
  1990年   3篇
  1989年   2篇
  1988年   5篇
  1987年   3篇
  1986年   3篇
  1985年   1篇
  1984年   2篇
  1980年   2篇
  1977年   1篇
  1976年   1篇
排序方式: 共有234条查询结果,搜索用时 78 毫秒
191.
A new nonstandard Lagrangian method is constructed for the one-dimensional, transient convective transport equation with nonlinear reaction terms. An “exact” time-stepping scheme is developed with zero local truncation error with respect to time. The scheme is based on nonlocal treatment of nonlinear reactions, and when applied at each spatial grid point gives the new fully discrete numerical method. This approach leads to solutions free from the numerical instabilities that arise because of incorrect modeling of derivatives and nonlinear reaction terms. Algorithms are developed that preserve the properties of the numerical solution in the case of variable velocity fields by using nonuniform spatial grids. Effects of different interpolation techniques are examined and numerical results are presented to demonstrate the performance of the proposed new method. © 1998 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 14: 467–485, 1998  相似文献   
192.
To create both greener and high-power metal-ion batteries, it is of prime importance to invent an unprecedented electrode material that will be able to store a colossal amount of charge carriers by a redox mechanism. Employing periodic DFT calculations, we modeled a new metal-organic framework, which displays energy density exceeding that of conventional inorganic and organic electrodes, such as Li- and Na-rich oxides and anthraquinones. The designed MOF has a rhombohedral unit cell in which an Ni(II) node is coordinated by 2,5-dicyano-p-benzoquinone linkers in such a way that all components participate in the redox reaction upon lithiation, sodiation and magnesiation. The spatial and electronic changes occurring in the MOF after the interaction with Li, Na and Mg are discussed on the basis of calculated electrode potentials versus Li0/Li+, Na0/Na+ and Mg0/Mg2+, respectively. In addition, the specific capacities and energy densities are calculated and used as a measure for the electrode applicability of the designed material. Although the highest capacity and energy density are predicted for Li storage, the greater structural robustness toward Na and Mg uptake suggests a higher cycling stability in addition to lower cost. The theoretical results indicate that the MOF is a promising choice for a green electrode material (with <10% heavy metal content) and is well worth experimental testing.  相似文献   
193.
We report an experimental study of the lidar signal depolarization as a function of the relative contribution of the multiple scattering in case of optically dense objects in the atmospheric planetary boundary layer. Results of the observation of fog and stratus clouds are presented, as well as those obtained by sounding of stratocumulus clouds during a snowfall. The lidar data point to a rise of the depolarization coefficient as the influence of the multiple scattering increases in consequence of both viewing angle enlargement and penetration into the object sounded. The variations of the depolarization coefficient are studied as a function of the field of view. In the case of fog, this dependence is approximated by a three-parameter exponential law; it is found that the depolarization increases steeply when the viewing angle is increased from 9 mrad to 12.5 mrad. The relationships between the approximation parameters and the microphysical characteristics of the scattering medium are considered. The experimentally determined size of the area where multiple scattering occurs is in good agreement with that calculated according to the diffusion model. The results obtained on the multiple scattering effect on the depolarization can also be employed in determining the extinction coefficient profiles in optically dense objects, as well as in evaluating the characteristic size of the scattering particles. Received: 6 September 1999 / Revised version: 7 February 2000 / Published online: 6 September 2000  相似文献   
194.
We present results of experimental investigations of the signal-polarization characteristics in the case of lidar sounding during precipitation. We show and discuss the lidar signals and the depolarization profiles along the sounding path for liquid- and solid-phase precipitation. In the former case we compare the signal characteristics at different degrees of precipitation rate. In the latter situation, we consider snowfall with particle shape close to that of Chebyshev particles. We also follow the lidar-signal changes depending on the field-of-view of the receiving optics. The experimental data are compared with results of theoretical estimates and models concerning the optical and microphysical characteristics of the rain and snow particles. In the case of liquid-phase precipitation – rain – the observed dependence of the lidar’s signal-polarization structure on the precipitation intensity has two aspects: on the one hand, the change of the raindrops’ shape, and, on the other, the multiple-scattering effects. The lidar data demonstrate that the signal depolarization, and, more specifically, its behavior along the sounding path, can be used as a criterion for the presence of multiple scattering. In the case of a snowfall consisting of Chebyshev particles, the simultaneous role is evident of two factors influencing the lidar-signal depolarization, namely, the non-spherical shape of the particles and the multiple-scattering effects. When the scattering takes place off particles with a large size and a shape strongly differing from spherical, we observed the predominant role of the non-sphericity of the scattering centers in the signal depolarization. Received: 6 December 2000 / Revised version: 11 July 2001 / Published online: 19 September 2001  相似文献   
195.
196.
197.
We prove that if ƒ is an orientation-preserving homeomorphism of a closed orientable surface M2 whose singular set Σ(ƒ) is totally disconnected, then ƒ is topologically conjugate to a conformal transformation.  相似文献   
198.
Satisfactory correlations were found of the frequencies of the title band (νCO) with 6+ and other substituent constants. The correlations proved valid for benzophenones with both neutral and anionic substituents (more than 100 compounds). The integrated intensities of the νCO bands (A1/2 CO) did not correlate with any type of substituent constants; the decrease in ACO in the cases of benzophenones with strong electron-releasing substituents was ascribed to a resonance-induced intensity borrowing from νCO BY THE aromatic skeletal bands (8-type). This statement wa confirmed by IR data few deuterated benzophenones.  相似文献   
199.
We present an algorithm that determines the link center of a simplen-vertex polygonP inO(n logn) time. The link center of a simple polygon is the set of pointsx insideP at which the maximal link-distance fromx to any other point inP is minimized. The link distance between two pointsx andy insideP is defined to be the smallest number of straight edges in a polygonal path insideP connectingx andy. Using our algorithm we also obtain anO(n logn)-time solution to the problem of determining the link radius ofP. The link radius ofP is the maximum link distance from a point in the link center to any vertex ofP. Both results are improvements over theO(n 2) bounds previously established for these problems. The research of J.-R. Sack was supported by the Natural Sciences and Engineering Research Council of Canada.  相似文献   
200.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号