首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   97篇
  免费   3篇
  国内免费   1篇
化学   48篇
晶体学   1篇
力学   10篇
数学   4篇
物理学   38篇
  2020年   3篇
  2019年   1篇
  2018年   1篇
  2016年   1篇
  2015年   1篇
  2013年   9篇
  2012年   6篇
  2011年   4篇
  2010年   2篇
  2009年   1篇
  2008年   2篇
  2007年   9篇
  2006年   8篇
  2005年   3篇
  2004年   1篇
  2002年   10篇
  2001年   5篇
  2000年   4篇
  1998年   1篇
  1996年   2篇
  1995年   2篇
  1993年   2篇
  1992年   2篇
  1991年   4篇
  1990年   3篇
  1989年   3篇
  1988年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1978年   1篇
  1976年   4篇
  1928年   1篇
  1927年   1篇
排序方式: 共有101条查询结果,搜索用时 15 毫秒
31.
This contribution reports light responsive catalytic nanoreactors based on poly(2-oxazoline) diblock copolymers. The hydrophobic block of the copolymer is a random copolymer consisting of a spiropyran functionalized 2-oxazoline (SPOx) and 2-(but-3-yn-1-yl)-4,5-dihydrooxazole (ButynOx), while the hydrophilic block is based on 2-methyl-2-oxazoline (MeOx). The block copolymer is terminated with tris(2-aminoethyl) amine (TREN) that serves as catalyst in a Knoevenagel condensation. Four block copolymers with different ButynOx/SPOx and hydrophilic/hydrophobic ratios are synthesized and self-assembled through solvent exchange. Micelles and vesicles of various sizes are observed by TEM, which undergo morphological and size changes in response to irradiation with UV light. We hypothesize that these transformations in the nanostructures are caused by increases in the hydrophilicity of the hydrophobic block when spiropyran (SP) isomerizes to merocyanine (MC) in the presence of UV light. The reversible transition from micellar to vesicular nanoreactors resulted in increased reaction kinetics through improved substrate accessibility to the catalytic site, or termination of the catalytic reaction due to polymer precipitation. These nanoreactors present a promising platform towards photoregulating reaction outcomes based on changes in nanostructure morphology.  相似文献   
32.
Abstract

A binary system consisting of a chlorohydroquinone-based ester bismaleimide (3-Cl), T m = 238°C, and a methylhydroquinone-based ester bismaleimide (3-Me), T m = 251°C, was investigated for the purpose of improving processability by widening the nematic phase range before polymerization. Calculations based on the Schroeder-van Laar equation predicted a system eutectic composition of 41% 3-Me monomer and a eutectic temperature of 202°C. Experiments found the eutectic composition at 35% 3-Me and the eutectic temperature at 218.5°C. Discrepancies between experimental results and theoretical predictions are likely due to error in measured heats of fusion either due to impurities in the samples or due to the reactive nature of the components being considered. Thermal cycling was also found to have a significant melting point depression effect. While significant depression of the system melting point was achieved, polymerization still occurred immediately after melting in all systems evaluated. All mixtures could be polymerized from the nematic phase to yield a solid which retained the nematic orientation of the starting polymer melt.  相似文献   
33.
N-Linked glycosylation is a major protein modification involved in many essential cellular functions. Methods capable of quantitative glycan analysis are highly valuable and have been actively pursued. Here we describe a novel N-glycosylamine-based strategy for isotopic labeling of N-linked glycans for quantitative analysis by use of mass spectrometry (MS). This strategy relies on the primary amine group on the reducing end of freshly released N-linked glycans for labeling, and eliminates the need for the harsh labeling reaction conditions and/or tedious cleanup procedures required by existing methods. By using NHS-ester amine chemistry we used this strategy to label N-linked glycans from a monoclonal antibody with commercially available tandem mass tags (TMT). Only duplex experiments can be performed with currently available TMT reagents, because quantification is based on the intensity of intact labeled glycans. Under mild reaction conditions, greater than 95 % derivatization was achieved in 30 min and the labeled glycans, when kept at ?20 °C, were stable for more than 10 days. By performing glycan release, TMT labeling, and LC–MS analysis continuously in a single volatile aqueous buffer without cleanup steps, we were able to complete the entire analysis in less than 2 h. Quantification was highly accurate and the dynamic range was large. Compared with previously established methods, N-glycosylamine-mediated labeling has the advantages of experimental simplicity, efficient labeling, and preserving glycan integrity.
Principle of N-Glycosylamine-mediated isotope labeling for mass spectrometry-based quantitative analysis of N-linked glycans  相似文献   
34.
b/a=0.5的椭圆形通道内非牛顿流体的强化传热   总被引:1,自引:0,他引:1  
对非牛顿流体在小尺寸椭圆形通道内的层流受迫对流传热进行了实验研究。实验介质为1500Wppm的Carbopol-934中性水溶液。采用直接通电的方法对管壁四周等热流加热。结果表明,椭圆通道内,非牛顿流体Carbopol水溶液的换热强于牛顿流体水,约高出水50%左右,说明粘弹性流体在椭圆形通道内也产生二次流并能强化换热;与同种浓度的Carbopol水溶液在方形通道内的换热结果相比,椭圆通道内的换热高于方形通道。流体的压力降则不受粘弹性的影响,仍符合幂律流体的阻力系数关系式(f=16/Re*)。  相似文献   
35.
Microscale regenerable biosensors are described and utilized to measure the natural fluorophor benzo[a]pyrene tetraol (BPT). The sensors combine laser-excited/fiber-optic remote sensing principles with a unique capillary tube delivery system to make repetitive, heterogeneous fluoroimmunoassay measurements. Two sensor configurations and modes of operation are described. Concentrations of BPT in the nanomolar range are easily measured with a reproducibility of 10% or better, depending on the sensor design, selective measurements can be made in ca. 20 min, then the sensor can be regenerated by delivering new reagents to the sensing chamber, without removing the sensor from the sample.  相似文献   
36.
An experiment is reported in which a polycrystalline sample of 99.9999% Au was cooled to 0.22 mK in a residual magnetic field of 0.32 mG. No superconductivity was seen.  相似文献   
37.
波长对Ag/TiO2催化剂上二氧化碳光催化还原的影响   总被引:1,自引:0,他引:1  
Photocatalytic reduction of CO2 by water was performed in the presence of a Ag/TiO2 catalyst under illumination by lamps with different wavelengths(254,365,and 400 nm).The yields of the main products(methane and methanol)were higher with the 254 nm lamp than with the 365 lamp while no products were observed with the 400 nm lamp.This was because the electron-hole generation rate increased with increasing energy of irradiation(decreasing wavelength)and there were higher densities of electron states at higher energies in TiO2. The increased efficiency of electron-hole generation with a shorter wavelength irradiation increased the efficiency of the catalyst.The energy of the electrons excited by visible light(400 nm)was too low for CO2 photocatalytic reduction.  相似文献   
38.
A large-sample-volume constant-flow magic angle sample spinning (CF-MAS) NMR probe is reported for in situ studies of the reaction dynamics, stable intermediates/transition states, and mechanisms of catalytic reactions. In our approach, the reactants are introduced into the catalyst bed using a fixed tube at one end of the MAS rotor while a second fixed tube, linked to a vacuum pump, is attached at the other end of the rotor. The pressure difference between both ends of the catalyst bed inside the sample cell space forces the reactants flowing through the catalyst bed, which improves the diffusion of the reactants and products. This design allows the use of a large sample volume for enhanced sensitivity and thus permitting in situ(13)C CF-MAS studies at natural abundance. As an example of application, we show that reactants, products and reaction transition states associated with the 2-butanol dehydration reaction over a mesoporous silicalite supported heteropoly acid catalyst (HPA/meso-silicalite-1) can all be detected in a single (13)C CF-MAS NMR spectrum at natural abundance. Coke products can also be detected at natural (13)C abundance and under the stopped flow condition. Furthermore, (1)H CF-MAS NMR is used to identify the surface functional groups of HPA/meso-silicalite-1 under the condition of in situ drying. We also show that the reaction dynamics of 2-butanol dehydration using HPA/meso-silicalite-1 as a catalyst can be explored using (1)H CF-MAS NMR.  相似文献   
39.
40.
[首页] « 上一页 [1] [2] [3] 4 [5] [6] [7] [8] [9] [10] [11] 下一页 » 末  页»
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号