首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   298篇
  免费   3篇
  国内免费   6篇
化学   124篇
晶体学   1篇
力学   9篇
数学   40篇
物理学   133篇
  2022年   3篇
  2020年   5篇
  2019年   5篇
  2015年   3篇
  2014年   5篇
  2013年   9篇
  2012年   14篇
  2011年   6篇
  2010年   13篇
  2009年   8篇
  2008年   5篇
  2007年   13篇
  2006年   10篇
  2005年   12篇
  2004年   11篇
  2003年   4篇
  2002年   6篇
  2001年   6篇
  2000年   9篇
  1999年   5篇
  1998年   6篇
  1997年   5篇
  1995年   5篇
  1994年   5篇
  1993年   4篇
  1992年   4篇
  1991年   5篇
  1990年   5篇
  1989年   4篇
  1987年   3篇
  1985年   4篇
  1984年   5篇
  1983年   5篇
  1982年   5篇
  1981年   14篇
  1980年   10篇
  1979年   7篇
  1978年   5篇
  1977年   5篇
  1976年   7篇
  1975年   4篇
  1974年   4篇
  1973年   4篇
  1972年   3篇
  1969年   2篇
  1942年   2篇
  1933年   2篇
  1931年   2篇
  1923年   2篇
  1893年   2篇
排序方式: 共有307条查询结果,搜索用时 31 毫秒
231.
232.
The simplicial complexK(A) is defined to be the collection of simplices, and their proper subsimplices, representing maximal lattice free bodies of the form (x: Axb), withA a fixed generic (n + 1) ×n matrix. The topological space associated withK(A) is shown to be homeomorphic to n , and the space obtained by identifying lattice translates of these simplices is homeorphic to then-torus.Corresponding author.The first author was partially supported by Hungarian NSF grants 1907 and 1909, and also by U.S. NSF grant CCR-9111491. The research of the second author was supported by DMS9103608 and the third author by NSF grant SES9121936.  相似文献   
233.
234.
235.
Given a polyhedronP we writeP I for the convex hull of the integral points inP. It is known thatP I can have at most135-2 vertices ifP is a rational polyhedron with size . Here we give an example showing thatP I can have as many as ( n–1) vertices. The construction uses the Dirichlet unit theorem.The results of the paper were obtained while this author was visiting the Cowles Foundation at Yale University  相似文献   
236.
237.
Electron paramagnetic resonance, viscosity, and small-angle neutron scattering (SANS) measurements have been used to study the interaction of mixed anionic/nonionic surfactant micelles with the polyampholytic protein gelatin. Sodium dodecyl sulfate (SDS) and the nonionic surfactant dodecylmalono-bis-N-methylglucamide (C12BNMG) were chosen as "interacting" and "noninteracting" surfactants, respectively; SDS micelles bind strongly to gelatin but C12BNMG micelles do not. Further, the two surfactants interact synergistically in the absence of the gelatin. The effects of total surfactant concentration and surfactant mole fraction have been investigated. Previous work (Griffiths et al. Langmuir 2000, 16 (26), 9983-9990) has shown that above a critical solution mole fraction, mixed micelles bind to gelatin. This critical mole fraction corresponds to a micelle surface that has no displaceable water (Griffiths et al. J. Phys. Chem. B 2001, 105 (31), 7465). On binding of the mixed micelle, the bulk solution viscosity increases, with the viscosity-surfactant concentration behavior being strongly dependent on the solution surfactant mole fraction. The viscosity at a stoichiometry of approximately one micelle per gelatin molecule observed in SDS-rich mixtures scales with the surface area of the micelle occupied by the interacting surfactant, SDS. Below the critical solution mole fraction, there is no significant increase in viscosity with increasing surfactant concentration. Further, the SANS behavior of the gelatin/mixed surfactant systems below the critical micelle mole fraction can be described as a simple summation of those arising from the separate gelatin and binary mixed surfactant micelles. By contrast, for systems above the critical micelle mole fraction, the SANS data cannot be described by such a simple approach. No signature from any unperturbed gelatin could be detected in the gelatin/mixed surfactant system. The gelatin scattering is very similar in form to the surfactant scattering, confirming the widely accepted picture that the polymer "wraps" around the micelle surface. The gelatin scattering in the presence of deuterated surfactants is insensitive to the micelle composition provided the composition is above the critical value, suggesting that the viscosity enhancement observed arises from the number and strength of the micelle-polymer contact points rather than the gelatin conformation per se.  相似文献   
238.
Several new organogold(III) derivatives of the type [AuX(2)(damp)] (damp = o-C(6)H(4)CH(2)NMe(2)) have been prepared [X = CN, SCN, dtc, or X(2) = tm; dtc = R(2)NCS(2) (R = Me (dmtc) or Et (detc)); tm = SCH(CO(2))CH(2)CO(2)Na] together with [AuCl(tpca)(damp)]Cl (tpca = o-Ph(2)PC(6)H(4)CO(2)H), [Au(dtc)(damp)]Y (Y = Cl, BPh(4)) and K[Au(CN)(3)(damp)]. The (13)C NMR spectra of these and previous derivatives have been fully assigned. In [Au(dtc)(2)(damp)] and K[Au(CN)(3)(damp)], the damp ligand is coordinated only through carbon, as shown by X-ray crystallography and/or NMR. [Au(detc)(2)(damp)] has space group C2/c, with a = 29.884(4) ?, b = 13.446(2) ?, c = 12.401(2) ?, beta = 99.45(3)(o), V = 4915 ?(3), Z = 8, and R = 0.057 for 1918 reflections. The damp and one detc ligand are monodentate, the other detc is bidentate; in solution, the complex shows dynamic behavior, with the detc ligands appearing equivalent. The crystal structure of [Au(dmtc)(damp)]BPh(4) [Pna2(1), a = 26.149(5) ?, b = 11.250(2) ?, c = 11.921(2) ?, V = 3507 ?(3), Z = 4, R = 0.073, 1772 reflections] shows both ligands to be bidentate in the cation, but the two Au-S distances are nonequivalent. The crystal structure of [Au(tm)(damp)] has also been determined [P2(1)/n, a = 18.267(7) ?, b = 9.618(3) ?, c = 18.938(4) ?, beta = 113.45(3)(o), V = 3053 ?(3), Z = 8, R = 0.079, 1389 reflections]. The tm is bound through sulfur and the carboxyl group which allows five-membered ring formation. In all three structures, the trans-influence of the sigma-bonded aryl group is apparent. [AuCl(2)(damp)] has been tested in vitroagainst a range of microbial strains and several human tumor lines, where it displays differential cytotoxicity similar to that of cisplatin. Against the ZR-75-1 human tumor xenograft, both [AuCl(2)(damp)] and cisplatin showed limited activity.  相似文献   
239.
Formylation of 2,2′,5′,2′-terfuran ( 1 ) with N-methylformanilide and phosphorus oxychloride gave 5-formyl-2,2′,5′,2′-terfuran ( 2 ) and 5,5′-diformyl-2,2′5′,2′-terfuran ( 3 ). Reduction of 2 and 3 afforded 5-hydroxymethyl-2,2′,5′,2′-terfuran ( 4 ) and 5,5′ dihydroxymethyl-2,2′,5′,2′-terfuran ( 5 ), respectively. Terfuran 1 reacted with phenylmagnesium bromide to give 5-(phenylhydroxymethyl)-2,2′,5′,2′-terfuran ( 6 ), and was carbonated to 5-carboxy 2,2′,5′,2′-terfuran ( 7 ) and 5,5′-dicarboxy-2,2′,5′,2′-terfuran ( 8 ). Bromination of 1 with N-bromosuccinimide gave 5,5′-dibromo 2,2′,5′,2′-terfuran ( 9 ).  相似文献   
240.
The unimolecular mass-analysed ion kinetic energy (MIKE) spectra of 9 pairs of hydrocarbon and ketone steroid isomers, differing only in the stereochemistry at the A/B and C/D ring junctions, have been measured and are discussed with a view to unambiguous structural identification. Reproducible differences in the MIKE spectra are observed, which are large enough in certain instances to suggest that MIKE spectrometry may be used for determining the stereochemistry of the A/B and C/D ring junctions in steroidal isomers, even if the second isomer is not available. This fortunate situation is rarely observed in conventional mass spectrometry of stereoisomeric steroids. Furthermore, these differences in the MIKE spectra may be correlated with differences in strain energy between configurational isomers. The sensitivity of MIKE spectrometry to differences in strain energies makes it a potentially powerful stereochemical probe.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号