全文获取类型
收费全文 | 2080篇 |
免费 | 93篇 |
国内免费 | 44篇 |
专业分类
化学 | 1563篇 |
晶体学 | 13篇 |
力学 | 95篇 |
数学 | 209篇 |
物理学 | 337篇 |
出版年
2024年 | 2篇 |
2023年 | 7篇 |
2022年 | 43篇 |
2021年 | 73篇 |
2020年 | 105篇 |
2019年 | 103篇 |
2018年 | 125篇 |
2017年 | 101篇 |
2016年 | 162篇 |
2015年 | 106篇 |
2014年 | 152篇 |
2013年 | 246篇 |
2012年 | 166篇 |
2011年 | 159篇 |
2010年 | 133篇 |
2009年 | 113篇 |
2008年 | 119篇 |
2007年 | 71篇 |
2006年 | 48篇 |
2005年 | 34篇 |
2004年 | 31篇 |
2003年 | 23篇 |
2002年 | 24篇 |
2001年 | 9篇 |
2000年 | 8篇 |
1999年 | 4篇 |
1998年 | 1篇 |
1997年 | 4篇 |
1996年 | 5篇 |
1995年 | 5篇 |
1994年 | 5篇 |
1993年 | 4篇 |
1992年 | 2篇 |
1991年 | 2篇 |
1990年 | 2篇 |
1989年 | 3篇 |
1987年 | 2篇 |
1985年 | 2篇 |
1984年 | 1篇 |
1983年 | 1篇 |
1982年 | 4篇 |
1981年 | 1篇 |
1980年 | 1篇 |
1979年 | 2篇 |
1978年 | 1篇 |
1976年 | 1篇 |
1975年 | 1篇 |
排序方式: 共有2217条查询结果,搜索用时 15 毫秒
1.
Paul Kirren Lucile Barka Saher Rahmani Nicolas Bondon Nicolas Donzel Philippe Trens Aurlie Bessire Laurence Raehm Clarence Charnay Jean-Olivier Durand 《Molecules (Basel, Switzerland)》2022,27(13)
(1) Background: Due to human activities, greenhouse gas (GHG) concentrations in the atmosphere are constantly rising, causing the greenhouse effect. Among GHGs, carbon dioxide (CO2) is responsible for about two-thirds of the total energy imbalance which is the origin of the increase in the Earth’s temperature. (2) Methods: In this field, we describe the development of periodic mesoporous organosilica nanoparticles (PMO NPs) used to capture and store CO2 present in the atmosphere. Several types of PMO NP (bis(triethoxysilyl)ethane (BTEE) as matrix, co-condensed with trialkoxysilylated aminopyridine (py) and trialkoxysilylated bipyridine (Etbipy and iPrbipy)) were synthesized by means of the sol-gel procedure, then characterized with different techniques (DLS, TEM, FTIR, BET). A systematic evaluation of CO2 adsorption was carried out at 298 K and 273 K, at low pressure. (3) Results: The best values of CO2 adsorption were obtained with 6% bipyridine: 1.045 mmol·g−1 at 298 K and 2.26 mmol·g−1 at 273 K. (4) Conclusions: The synthetized BTEE/aminopyridine or bipyridine PMO NPs showed significant results and could be promising for carbon capture and storage (CCS) application. 相似文献
2.
Bahador Abolpour Benafsheh Abolpour Roozbeh Abolpour Hossein Bakhshi 《Research on Chemical Intermediates》2013,39(2):707-719
Concrete mix design is a process of proportioning the ingredients in right proportions. The aim of this study is to design a fuzzy logic model for determination of the compressive strength of a concrete. The datasets which have been loaded into a fuzzy logic model contain 1,030 concrete mixtures. Input fields of the fuzzy expert system are weight percent of cement, water, blast furnace slag, fly ash, super plasticizer, fine aggregate, coarse aggregate, and age of the concrete. Output field is concrete compressive strength. Finally, 897 rules used for this fuzzy logic modeling. 相似文献
3.
4.
Parisa Maboodi Soheila Hemmatzadeh Seyyed Hossein Asadpour H. Rahimpour Soleimani 《理论物理通讯》2014,62(6):864-870
The behavior of the Goos-Hänchen (GH) shifts of the reflected and transmitted probe light beams is theoretically investigated. In a fixed geometrical configuration, the effect of quantum interference induced by spontaneous emission on the phase control of the GH shifts is analyzed in this paper. It is found that in a four-level N-type atomic system as an intracavity medium, the GH shifts of the reflected and transmitted probe light beam are completely phase dependent. 相似文献
5.
6.
Hossein Movla 《Optik》2014
Chalcopyrite Cu(In,Ga)Se (CIGS) is a very promising material for thin film photovoltaics and offers a number of interesting advantages compared to the bulk silicon devices. CIGS absorbers today have a typical thickness of about 1–2 μm. However, on the way toward mass production, it will be necessary to reduce the thickness even further. This paper indicates a numerical study to optimization of CIGS based thin film solar cells. An optimum value of the thickness of this structure has been calculated and it is shown that by optimizing the thickness of the cell efficiency has been increases and cost of production can be reduces. Numerical optimizations have been done by adjusting parameters such as the combination of band gap and mismatch as well as the specific structure of the cell. It is shown that by optimization of the considered structure, open circuit voltage increases and an improvement of conversion efficiency has been observed in comparison to the conventional CIGS system. Capacitance–voltage characteristics and depletion region width versus applied voltage for optimized cell and typical cell has been calculated which simulation results predict that by reducing cell layers in the optimized cell structure, there is no drastically changes in depletion layer profile versus applied voltage. From the simulation results it was found that by optimization of the considered structure, optimized value of CIGS and transparent conductive oxide thickness are 0.3 μm and 20 nm and also an improvement of conversion efficiency has been observed in comparison to the conventional CIGS which cell efficiency increases from 17.65 % to 20.34%, respectively. 相似文献
7.
Polyoxometalates (POM) supported on zirconia, H3PW12O40/ZrO2, were prepared by incorporating polyphosphotungstate into a zirconia matrix via sol-gel technique that involving the hydrolysis of zirconium (IV) n-butoxide, Zr (n-OBu)4, as the ZrO2 source. This insoluble and readily separable catalyst was characterized by using XRD, FT-IR, SEM, and UV diffuse reflectance spectroscopy (UV-DRS), indicating that the polyphosphotungstate was chemically attached to the zirconia supports, and primary Keggin structure remained intact. The photocatalytic and sonocatalytic activity of the supported polyphosphotungstate was tested via degradation of different dyes in aqueous solutions. The POM-ZrO2 nanocomposite showed higher photocatalytic and sonocatalytic activity than pure polyoxometalate or pure ZrO2. 相似文献
8.
9.
ABSTRACTAn ab initio study, at the MP2/aug-cc-pVTZ level of theory, is performed to study σ-hole bond in binary XH3C···CNY complexes, where X = CN, F, NO2, CCH and Y = H, OH, NH2, CH3, C2H5, Li. This type of interaction is labelled as ‘carbon bond’, since a covalently bonded carbon atom acts as the Lewis acid in these systems. The geometrical and energetic parameters of the resulting complexes are analysed in details. The interaction energies of these complexes are between ?4.97 kJ/mol in (HCC)H3C···CNH and ?23.07 kJ/mol in (O2N)H3C···CNLi. It is found that the electrostatic interaction plays a key role in the overall stabilisation of these carbon-bonded complexes. To deepen the understanding of the nature of the carbon-bonding, the molecular electrostatic potential, natural bond orbital, quantum theory of atoms in molecules and non-covalent interaction index analyses are also used. Our results indicate that the carbon bond is favoured over the C-H···C hydrogen bond in the all complexes considered and may suggest the possible important roles of the C···C interactions in the crystal growth and design. 相似文献
10.
In this work, the ability of different types of nanocages including Al12N12, Al12P12, Be12O12, B12N12, Si12C12, Mg12O12 and C24 for the adsorption and detection of poisonous gases HCN and ClCN has been investigated, theoretically using the D3 dispersion corrected density functional theory (DFT-D3). The absorption spectra of HCN–nanocage and ClCN–nanocage complexes were calculated by the time-dependent density functional theory (TD-DFT) and compared with the calculated absorption spectrum of isolated nanocage to investigate the ability of nanocage for sensing of HCN and ClCN gases. It was found that the strongest interaction between HCN (ClCN) molecule and nanocage takes place when the molecule is adsorbed via its N atom on the surface of nanocage except for C24. Also, it was shown that the Al12N12 is the best adsorbent for HCN and ClCN gases among the selected nanocages and Si12C12 is the best sensor for the detection of these gases using the electroconductivity and absorption spectroscopy techniques. 相似文献