首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   334篇
  免费   22篇
  国内免费   34篇
化学   255篇
晶体学   6篇
力学   36篇
综合类   3篇
数学   21篇
物理学   69篇
  2024年   4篇
  2023年   7篇
  2022年   13篇
  2021年   12篇
  2020年   12篇
  2019年   10篇
  2018年   9篇
  2017年   8篇
  2016年   20篇
  2015年   11篇
  2014年   13篇
  2013年   13篇
  2012年   26篇
  2011年   27篇
  2010年   13篇
  2009年   16篇
  2008年   15篇
  2007年   23篇
  2006年   22篇
  2005年   21篇
  2004年   11篇
  2003年   11篇
  2002年   13篇
  2001年   10篇
  2000年   12篇
  1999年   13篇
  1998年   2篇
  1997年   5篇
  1996年   3篇
  1995年   4篇
  1994年   2篇
  1993年   3篇
  1992年   3篇
  1991年   1篇
  1987年   1篇
  1986年   1篇
排序方式: 共有390条查询结果,搜索用时 15 毫秒
231.
1 会议概况 值此中国力学学会50华诞之际,为回顾中国力学的光荣历程、展现我国力学的优秀成果、弘扬中国力学的优秀传统、展望新世纪力学学科的发展趋向,中国力学学会成立50周年暨中国力学学会学术大会'2007(Chinese Conference of Theoretical and Applied Mechanics-2007,CCTAM'2007)于2007年8月20~22日在北京召开.大会由中国力学学会主办,39个单位协办.  相似文献   
232.
孙茂  冯西桥  赵红平 《力学进展》2009,39(1):119-120
由中国力学学会、北京国际力学中心(International Center for Theoretical and Appfied Mechanics in Beijing.BICTAM)和国家自然科学基金委员会主办,北京航空航天大学、清华大学和中国力学学会承办的"2008年生物材料与动物运动的力学与仿生国际研讨会"(Intemational Workshop on Mechanics and Biomjmetics of Biomaterials & Animal Locomotion,IWMBAC-2008)于2008年12月9~11日在海南三亚召开.  相似文献   
233.
热处理对高温煎煮和低温酶法提制绿茶多糖的影响   总被引:1,自引:0,他引:1  
采用复合酶法提取和二乙基氨基乙基(DEAE)-纤维素52(DE-52)柱层析纯化制得茶多糖复合物TPC-1;采用煎煮提取、Sephadex G-200柱层析纯化获得茶多糖(TPC)复合物TPC-2。 高效液相凝胶渗透色谱 蒸发光散射检测表明,TPC-1和TPC-2经98 ℃水浴处理5 h后,TPC-1的主要均一性组分TPC-1a裂变为TPC-1a-1和TPC-1a-2 2个组分;圆二色(CD)谱显示TPC-1在194 nm呈现1个正Cotton效应峰,热处理后在216 nm处增加1个正Cotton效应峰;TPC-2经热处理后其中2种均一性组分TPC-2a和TPC-2b未变化,CD谱显示TPC-2在203、215和272 nm处均呈现显著的的正Cotton效应峰,经热处理后前2个峰消失。 98 ℃水浴热处理改变了低温复合酶法提制的茶多糖复合物TPC-1溶液构象和均一性组分的分布,未改变沸水煎煮提制的TPC-2的均一性组分的分布和凝胶色谱行为,但影响了其溶液构象。  相似文献   
234.
建立了以锌粉-氢氧化钠熔融样品,盐酸浸取,用盖氏漏斗作为还原装置,铁粉和铝粒将锡还原,碘酸钾滴定法测定ITO粉末材料中锡的分析方法。方法测定结果稳定,精密度好,相对标准偏差为0.42%~0.67%,加标回收率在99.8%~101%,能够满足ITO粉末中锡的测定要求。  相似文献   
235.
The nonlinear optical (NLO) crystals that can expand the wavelength of the laser to the deep-ultraviolet (DUV) region by the cascaded second harmonic generation (SHG) are of current research interest. It is well known that borates are the most ideal material class for the design of new DUV NLO crystals owing to the presence of good NLO genes, e.g., BO3 or B3O6 groups. However, the NLO pyro-borates with the B2O5 dimers as the sole basic building units are still rarely reported owing to their small SHG responses. In this communication, by constructing a planar pentagonal [Ca(B2O5)] layer, the NLO pyro-borate Ba4Ca(B2O5)2F2 with a large SHG response (∼2.2 × KDP, or ∼7 × α-Li4B2O5) and a DUV transparent window has been designed and synthesized. The first-principles calculations show that the large SHG response of Ba4Ca(B2O5)2F2 mainly originates from the better π-conjugation of the coplanar B2O5 dimers in the [Ca(B2O5)] layer. In addition, the planar pentagonal pattern in the [Ca(B2O5)] layer provides an ideal template for designing the new DUV NLO crystals, apart from those in known DUV borates, e.g., the [Be2BO3F2] layer in KBe2BO3F2 (KBBF).

A new deep-UV NLO pyro-borate Ba4Ca(B2O5)2F2 was synthesized by solid-state reactions. The better π-conjugation of B2O5 dimers in the planar pentagonal layer achieves a large SHG response (∼2.2 × KDP), which is the largest among all the known DUV transparent borates with B2O5 units.

Deep-ultraviolet (DUV, λ < 200 nm) coherent lights with high photon energy, high spatial resolution, and a small heat-affected zone are of significance for applications in photolithography, high-resolution spectroscopy, laser cooling, and scientific equipment.1–4 However, it is difficult or well-nigh impossible for solid-state lasers to directly radiate the DUV coherent lights. In contrast, relying on the process of second harmonic generation (SHG) of nonlinear optical (NLO) crystals is a more effective way to generate the DUV coherent lights and causes much attention.5,6 Therefore, the NLO crystal has become an important material basis of solid-state lasers, which seriously affects the development of all-solid-state laser technology. However, it is still a great challenge to rationally design and synthesize DUV NLO crystals because of the extremely rigorous requirements of structural symmetry and properties.7–10 Structurally, the DUV NLO crystals must crystallize in the noncentrosymmetric (NCS) space groups which are the prerequisite for the materials to exhibit SHG responses. Moreover, it should possess a broad transparency window, a largely effective NLO coefficient (deff ≥ 0.39 pm V−1), and a moderate birefringence (0.05–0.10@1064 nm) to achieve the phase-matching (PM) conditions in the DUV region.10 Based on these requirements, borates have been considered as the ideal material class for DUV NLO crystals because of their special structure and properties'' virtues, including the rich acentric structural types, large band gaps, and stable physical and chemical properties.8 To date, the commercialized borate-based UV NLO crystals consist of β-BaB2O4 (BBO), LiB3O5 (LBO), CsLiB6O10 (CLBO),9,10 and the practical DUV NLO crystal KBe2BO3F2 (KBBF). Especially for KBBF, it has become the sole material that can generate DUV coherent laser light (177.3 nm) by a direct SHG method.7 Other excellent borate-based UV NLO crystals also consist of K3B6O10Cl,11 SrB5O7F3,12 Li2B6O9F2,5 CsAlB3O6F,13 M2B10O14F6 (M = Ca, Sr),14 NH4B4O6F,15 NaSr3Be3B3O9F4,16 AB4O6F (A = K, Rb, and Cs),17etc.The above borate-based materials have achieved great success as UV and DUV NLO crystals, which are mainly attributed to the ability of boron atoms to coordinate with three or four oxygen anions forming trigonal-planar or tetrahedral building blocks.18,19 For example, the first borate-based NLO crystal, KB5O8·4H2O (KB5), has the basic building units (BBUs) of [B5O10], while the BBUs of β-BBO, LBO, and KBBF are [B3O6], [B3O7], and isolated [BO3], respectively.7,8 Remarkably, although various borate crystals with different types of borate groups have been explored during the past decades, the pyro-borate NLO crystals with B2O5 groups as the sole BBUs are rarely reported owing to their weak SHG responses.20–23 For example, the SHG response of the DUV transparent α-Li4B2O5 (ref. 23) is only ∼0.3 × KDP, which is far smaller than the expected value (0.39 pm V−1, 1 × KDP).Actually, the flexible B2O5 groups which are composed of two π-conjugated BO3 units through corner-sharing may also be capable of generating excellent optical performance if they have benign arrangements. In recent research, Pan''s group has indicated that the B2O5 dimers are perfect for the design of DUV birefringent crystals. By the synergistic combination, they have successfully designed a potential pyro-borate birefringent crystal, Li2Na2B2O5, with a short UV cut-off edge (181 nm) and large birefringence (0.095@532 nm).21 And they have also grown Ca(BO2)2 crystals exhibiting a short UV cut-off edge and larger birefringence (169 nm; 0.2471@193 nm). Based on the analysis of the structure–property relationship of Ca(BO2)2, they stated that the polymerized planar BnO2n+1 groups, e.g., B2O5, could generate a larger anisotropy than isolated BO3.22 However, their opposite arrangements of B–O groups make them crystallize in the centrosymmetric (CS) space groups, which limit their further development as NLO compounds. Thus, it is clear that pyro-borates exhibiting a large birefringence and a short UV cut-off edge would also be promising DUV NLO crystals if their SHG responses can be enhanced.Based on the above-mentioned ideas, a systematical investigation has been performed on DUV pyroborates. And finally, we successfully synthesized a new NCS pyro-borate, Ba4Ca(B2O5)2F2, which can exhibit not only a large SHG response (∼2.2 × KDP and ∼7 × α-Li4B2O5) but also a short UV cut-off edge (<190 nm). Analyzing its structure, one can find that its excellent NLO properties mainly originate from the unique planar pentagonal [Ca(B2O5)] layer, where the B2O5 groups adopt the almost coplanar configurations that favor the structure to generate large SHG response and birefringence,21 meanwhile the terminal O atoms of B2O5 groups are also linked by the Ca2+ cations, which eliminate the dangling bonds of B2O5 groups and further blue-shift the UV cut-off edge. More importantly, the adjacent [Ca(B2O5)] layers in Ba4Ca(B2O5)2F2 are linked by other B2O5 groups to form a 3D framework, which will be favorable for the material to avoid the layer habit that KBBF suffers from. In this sense, the planar pentagonal [Ca(B2O5)] layer is similar to the [Be2BO3F2] layer in KBBF, and it can be seen as a new structure template for the design of new DUV NLO crystals, especially for the DUV pyro-borates. Herein, we will describe the synthesis, experimental and computational characterization as well as the functional properties of the new DUV NLO material, Ba4Ca(B2O5)2F2.A polycrystalline sample of Ba4Ca(B2O5)2F2 was synthesized by the conventional solid-state reaction and the purity was confirmed by powder X-ray diffraction (XRD) (Fig. S1). With the polycrystalline sample, the thermal behavior of Ba4Ca(B2O5)2F2 was studied by the thermogravimetric (TG) and differential scanning calorimetry (DSC) measurements. The heating DSC curve shows a sharp endothermic peak at 815 °C with no obvious weight loss in the TG curve (Fig. S2), suggesting that Ba4Ca(B2O5)2F2 has good thermal stability. To further investigate the thermal behavior of Ba4Ca(B2O5)2F2, the polycrystalline sample was calcined at 840 °C and the XRD analysis showed that the calcined sample was Ba4Ca(B2O5)2F2, Ba2Ca(BO3)2 (PDF #01-085-2268), Ba2CaB6O12 (PDF #01-075-1401) and other unknown phases (Fig. S3). These results illustrate that Ba4Ca(B2O5)2F2 melts incongruently and the suitable flux is necessary for the crystal growth.With the Na2O–PbF2–B2O3 as the flux, millimeter-sized block crystals of Ba4Ca(B2O5)2F2 were grown for the single-crystal XRD structure determination. Ba4Ca(B2O5)2F2 crystallizes in the NCS and polar space group, P21 (Table S1). In the asymmetric unit, there are four unique Ba, one Ca, four B, ten O, and two F atom(s), which all fully occupy the 2a Wyckoff positions (Table S2). All B atoms are coordinated to three oxygen atoms to form the BO3 triangles with the B–O distances ranging from 1.312(17) to 1.460(16) Å and O–B–O angles varying from 108.0(13) to 130.2(15)°. The BO3 triangles are further connected to form two types of B2O5 dimers, i.e. plane B(1,3)2O5 and twisted B(2,4)2O5, which are the BBUs of Ba4Ca(B2O5)2F2. The Ca atoms are coordinated to six oxygen atoms to form CaO6 octahedra with the Ca–O distances ranging from 2.285(9) to 2.325(13) Å. For the Ba2+ cations, they exhibit three different coordination environments, Ba(1,2)O6F2, Ba(3)O8F2, and Ba(4)O7F2 (Fig. S4) with the Ba–O distances ranging from 2.585(9) to 3.250(11) Å and the Ba–F bond lengths ranging from 2.635(8) to 2.736(8) Å. Remarkably, for the F anions, each unique fluorine atom serves as a common vertex for four Ba atoms to form the FBa4 polyhedra (Fig. S5a), which could be treated as fluorine-centered secondary building units (SBUs). The Ba–F–Ba angles vary from 99.0 (2) to 120.2 (3)°. The bond valence sum (BVS) calculations show the values of 1.67–1.97, 2.45, 2.88–3.10, 1.78–2.13, and 0.95–1.09, for Ba2+, Ca2+ B3+, O2−, and F, respectively (Table S2). The BVSs of atoms are consistent with their expected oxidation states except the one from the Ca2+ cations. The larger BVSs of Ca2+ cations can be attributed to six shorter Ca–O bond lengths, which are also observed in other Ca2+-containing borates, such as YCa3(VO)3(BO3)4 (2.44),24 Rb2Ca3B16O28 (2.29), and Cs2Ca3B16O28 (2.30).25The structure of Ba4Ca(B2O5)2F2 is shown in Fig. 1. In the structure, the plane B(1,3)2O5 dimer is first connected with four CaO6 octahedra, meanwhile, each CaO6 octahedron is also linked by four B(1,3)2O5 dimers through sharing their four equatorial O atoms to form a unique planar pentagonal [Ca(B2O5)] layer in the bc plane (Fig. 1a, b). Then, these [Ca(B2O5)] layers are further linked by the twisted B(2,4)2O5 dimers to construct a 3D framework with Ba2+ cations maintaining the charge balance (Fig. 1c). Remarkably, for the arrangements of the Ba2+ cations and the F anions, the fluorine-centered SBU FBa4 polyhedra are linked to construct the 2D [F2Ba4] infinite layer (Fig. S5b) with the same orientation, which further fills the apertures in the [Ca(B2O5)2] framework (Fig. S5c). The existence of fluorine-centered SBUs would certainly have a strong influence on the local coordinate environments, and finally on the whole structure.26Open in a separate windowFig. 1(a) The [Ca(B2O5)] layer is composed of B2O5 dimers and CaO6 octahedra. (b) The planar pentagonal topology layer. The comparison of structures between (c) Ba4Ca(B2O5)2F2 and (d) KBBF.It is very interesting that Ba4Ca(B2O5)2F2 contains a planar pentagonal [Ca(B2O5)] layer, which is similar to the [Be2BO3F2] layer in KBBF. The structural evolution from KBBF to Ba4Ca(B2O5)2F2 is also shown in Fig. 1c and d. In KBBF, the BBUs are the planar BO3 triangles, which are connected with BeO3F in the ab plane by strong covalent bonds to form the [Be2BO3F2] layers (Fig. S6c) and the [Be2BO3F2] layers have achieved excellent NLO properties of the KBBF crystal.7 However in Ba4Ca(B2O5)2F2, the BO3 triangles are changed into the B2O5 dimers, and the BeO3F tetrahedra are substituted by the CaO6 polyhedra. These B2O5 dimers are also connected by the CaO6 polyhedra to form the interesting planar pentagonal [Ca(B2O5)] layer (Fig. S6d). More importantly, in KBBF, the adjacent [Be2BO3F2] layers are connected by the weak K+-F ionic bonds that results in the strong layer habit of the KBBF crystals, whereas in Ba4Ca(B2O5)2F2, the [Ca(B2O5)] layers are bridged by the strong covalent B–O bonds to form a stable 3D framework, which will greatly overcome the layering tendency of the KBBF crystal and facilitate the crystal growth.In addition, we also notice that the planar pentagonal [Ca(B2O5)] layer maybe helpful for enhancing the SHG responses of pyro-borates because small SHG responses of pyro-borates are attributed to the typical twisted configurations of the B2O5 groups, which are unfavorable for forming the π-conjugation and the superposition of the microscopic SHG response. For example, α-Li4B2O5, a DUV transparent pyro-borate with sole B2O5 units as the BBUs, has a weak SHG response, which may be derived from the twisted B2O5 groups and non-planar arrangements (Fig. S7a). However, in Ba4Ca(B2O5)2F2, the planar configuration of the pentagonal layers can assist the B2O5 groups to adopt a nearly coplanar arrangement (Fig. S7b) and effectively enhance the π-conjugation of B2O5 groups. The better π-conjugation of the planar B2O5 groups in the planar pentagonal [Ca(B2O5)] layer has also been confirmed by the electron orbital calculation based on the first-principles calculations.27 The calculated result is shown in Fig. 2. Clearly, the prominent conjugated interactions are observed in the nearly coplanar B(1,3)2O5 dimers of Ba4Ca(B2O5)2F2 (Fig. 2a), whereas it does little in the twisted B(2,4)2O5 dimers of Ba4Ca(B2O5)2F2 (Fig. 2b) and two types of twisted B2O5 dimers in α-Li4B2O5 (Fig. 2c and d). It can be expected that the nearly coplanar B2O5 dimers are more conducive to the large SHG response than the twisted B2O5 dimers. Remarkably, the similar pentagonal layers are also observed in other pyro-phosphates, such as Ba2NaClP2O7, K2Sb(P2O7)F, Rb3PbBi(P2O7)2, and Rb3BaBi(P2O7)2. Clearly, as pyro-phosphates are the non-π-conjugated systems, the planar pentagonal layers are only helpful for the orientation of anion groups.28–31 However, they cannot form the better π-conjugation. Therefore, the better π-conjugation of the nearly coplanar B2O5 groups in planar pentagonal layers of pyro-borate Ba4Ca(B2O5)2F2 would have a different contributing mechanism to the SHG effect with other non-π-conjugated pyro-phosphates.Open in a separate windowFig. 2The orbitals of the nearly coplanar B(1,3)2O5 (a) and twisted B(2,4)2O5 dimers (b) in Ba4Ca(B2O5)2F2. The orbitals of two twisted B2O5 dimers (c and d) in α-Li4B2O5.The presence of BO3 triangles in Ba4Ca(B2O5)2F2 is confirmed by the IR spectral measurements (Fig. S8). The peaks at 1362 cm−1 and 1208 cm−1 can be attributed to the asymmetric stretching of BO3 groups.32 A strong band at 1069 cm−1 in the IR spectrum may be associated with the stretching vibration of B–O–B in B2O5.33,34 The weak absorption bands at 950, and 810 cm−1 correspond to the symmetrical stretching vibrations of BO3 and B–O–B in B2O5, respectively. The peaks at 751 and 615 cm−1 can be attributed to the out-of-plane bending of the BO3 groups.34 Further, the UV-vis-NIR diffuse reflectance spectrum was also measured (Fig. S9), which shows that Ba4Ca(B2O5)2F2 is transparent down to the DUV region with a UV cut-off edge less than 190 nm (corresponding to a large band gap of 6.2 eV), which is comparable to the newly developed NLO-active borates, such as RbB3O4F2 (<190 nm), CsZn2BO3X2 (X2 = F2,Cl2, and FCl)) (<190 nm) and so on.35–38 The short cut-off edge demonstrates the potential application of Ba4Ca(B2O5)2F2 as a DUV NLO crystal.As Ba4Ca(B2O5)2F2 crystalizes in the NCS space group P21, it possesses the SHG response, which was measured by the Kurtz-Perry method with the well-known NLO material KH2PO4 (KDP) as a reference.39 As shown in Fig. 3, the SHG intensities of Ba4Ca(B2O5)2F2 increase with the increase of particle sizes, indicating that Ba4Ca(B2O5)2F2 is type-I phase-matchable. The SHG intensity of Ba4Ca(B2O5)2F2 at the particle size of 150–212 μm is about 2.2 times that of KDP, and is larger than that of KBBF (1.2 × KDP) or comparable with those newly reported UV NLO crystals, i.e. γ-Be2BO3F (2.3 × KDP),6 β-Rb2Al2B2O7 (2 × KDP),40 Li4Sr(BO3)2 (2 × KDP),41 CsB4O6F(∼1.9 × KDP).2 In addition, as we know, the SHG response of Ba4Ca(B2O5)2F2 is the largest among all the known DUV transparent borates with B2O5 units (Table S4). Its SHG response (2.2 × KDP) is about seven times larger than that of α-Li4B2O5 (0.3 × KDP), another DUV transparent pyro-borate with sole B2O5 units.Open in a separate windowFig. 3(a) Phase-matching curve, i.e., particle size vs. SHG intensity, data for Ba4Ca(B2O5)2F2 and KH2PO4 (KDP) as reference. The solid curve is a guide for the eye, not a fit to the data. (b) Oscilloscope traces showing SHG intensities for Ba4Ca(B2O5)2F2 and KDP.To understand the origin of the excellent optical properties of Ba4Ca(B2O5)2F2, we also carried out the first-principles calculations.27 It shows that Ba4Ca(B2O5)2F2 has an indirect band gap of 6.34 eV (Figures S10a), which is in accordance with the experimental results. The valence band maximum (VBM) of Ba4Ca(B2O5)2F2 is mainly composed of the orbitals in Ba, and O atoms, while the conduction band minimum (CBM) is dominantly composed of the orbitals in Ba, B, and O atoms. Therefore, the band gap of Ba4Ca(B2O5)2F2 is mainly determined by Ba atoms and B2O5 groups. Based on the calculated electron structure, the NLO coefficients of Ba4Ca(B2O5)2F2 are also calculated. The largest NLO coefficient of Ba4Ca(B2O5)2F2 is d22 = −0.524 pm V−1, which is about 5 times lower than that of α-Li4B2O5 (d24 = −0.102 pm V−1) (Table S5a), which is matched with the experimental one. Further, the SHG-weighted density maps of Ba4Ca(B2O5)2F2 are shown in Fig. 4. These reveal that B2O5 dimers make the dominant contribution (72.7%) to the total SHG effect (Table S5b). The band-resolved SHG analysis can also conclude that B–O orbitals in Ba4Ca(B2O5)2F2 contribute more to the SHG response than those in α-Li4B2O5 (Fig. S10b, S10c), indicating that the arrangements of B2O5 dimers in Ba4Ca(B2O5)2F2 is more beneficial for the large SHG response. And different from α-Li4B2O5, F-centered secondary building units (SBUs) exist in the structure of Ba4Ca(B2O5)2F2, and they are further linked to construct 2D [F2Ba4] infinite layers, which could help B2O5 groups arrange in a planar pattern (Fig. S5).26 So, based on the above analysis, we can conclude that the nearly coplanar B2O5 dimers in the planar pentagonal layer and the SBU FBa4 tetrahedra make a significant contribution to the SHG response of Ba4Ca(B2O5)2F2.Open in a separate windowFig. 4The SHG-weighted density maps of the virtual electron process (a) and virtual hole process (b) of d22 for Ba4Ca(B2O5)2F2.  相似文献   
236.
在某高功率微波系统中,通过控制多路移相器的位置,来达到对微波波束的精确控制。在伺服控制系统的设计中,为了解决强电磁场对伺服系统的干扰与破坏,在设计时从控制系统方案设计、系统组成、移相器单元设计、位置传感器设计、位置环路设计、电路板设计、机箱设计、传输线缆等方面进行严格的针对性设计与处理。设计过程中,对关键器件与部件进行现场试验进行方案验证与选择。最终,在高功率微波系统对目标进行连续辐射的实测中,工作稳定可靠,控制系统对多路移相器的定位精度达到0.1 mm,达到了预期的效果。  相似文献   
237.
在二维单介质磁驱动数值模拟程序(MDSC2)的基础上,采用局部结构整体非结构的网格拼接方法,研制了处理滑移界面的二维多介质程序。二维多介质程序解决了单介质程序无法处理的电极与飞片之间相互作用的模拟问题,能更准确地模拟磁驱动发射实验的飞片状态。计算结果表明:发射飞片的自由面部分始终保持固体密度状态;自由面速度历史和VISAR测量的速度曲线相吻合;飞片中间部分在电流加载过程中始终具有良好的平面性,飞片两端出现拖尾质量,产生不稳定性,这是由于飞片两端与飞片中间部分的磁场强度分布不同造成的。  相似文献   
238.
沈飞  李争  许雄  李林  樊玉琦  周红平  郭凯  郭忠义 《强激光与粒子束》2019,31(9):093204-1-093204-5
针对目前电磁态势认知没有形成统一认识的问题,以电磁态势中的雷达对抗态势为研究对象,提出了态势分层认知的概念,研究了雷达对抗态势知识的获取与分析,随后针对雷达对抗态势知识表示问题,建立了雷达对抗态势知识表示模型,为后续的电磁态势要素计算以及态势表征研究提供了基础。最后梳理了雷达对抗态势与电磁态势的相互关系,为下一步将雷达对抗态势融入电磁态势提供支撑。  相似文献   
239.
LMR spectra for v=1←0 transitions of14N16O in X2II1/2, 3/2 states were observed at 5.6 μm and 5.4 μm of CO laser. Introducing the advanced isotopic molecular constant scaling function to Hund’s case (a) diatomic structure model, these spectra were analyzed and fitted together with all reliable previous spectral data of14N16O as well as14N17O and14N18O. A full set of precise molecular parameters and their vibrational dependencies have been determined with much higher precision (1–2 orders for most parameters). Many of them have been obtained for the first time. Using isotopic scaling function, the molecular constants of14N17O and14N18O were deduced.  相似文献   
240.
飞秒泵浦-探测实验数据分析   总被引:4,自引:0,他引:4       下载免费PDF全文
陈述了几种获取飞秒泵浦 探测实验数据中的光解动力学信息的解析物理模型 .其中单分量和双分量模型用来解释母体分子的单通道和双通道解离过程 ,另一个单分量模型用来解释碎片分子的解离或去激发过程 .所有模型都结合泵浦 探测实验数据予以解释  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号