首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   338篇
  免费   36篇
  国内免费   37篇
化学   254篇
晶体学   1篇
力学   7篇
数学   64篇
物理学   85篇
  2023年   21篇
  2022年   29篇
  2021年   38篇
  2020年   45篇
  2019年   37篇
  2018年   30篇
  2017年   27篇
  2016年   20篇
  2015年   18篇
  2014年   10篇
  2013年   17篇
  2012年   12篇
  2011年   11篇
  2010年   8篇
  2009年   11篇
  2008年   11篇
  2007年   12篇
  2006年   12篇
  2005年   4篇
  2004年   7篇
  2003年   5篇
  2002年   3篇
  2001年   7篇
  2000年   3篇
  1999年   2篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1973年   1篇
排序方式: 共有411条查询结果,搜索用时 78 毫秒
181.
Surface capping has been shown to play a pivotal role in controlling the evolution of metal nanocrystals into different shapes or morphologies. With the synthesis of Au@Pd concave nanocubes as an example, here we demonstrate that the capping agent can also impact the reduction kinetics of a precursor, and thereby its reduction pathway, for the formation of metal nanocrystals with distinct morphologies. A typical synthesis involves the reduction of a PdII precursor by ascorbic acid at room temperature in the presence of Au nanospheres as seeds, together with the use of hexadecyltrimethylammonium chloride (CTAC) or hexadecyltrimethylammonium bromide (CTAB) as the capping agent. In the case of CTAC, the PdII precursor prevails as PdCl42−, leading to the formation of Au@Pd concave nanocubes with a rough surface because of the fast reduction kinetics and thus the dominance of solution reduction pathway. When switched to CTAB, the PdII precursor changes to PdBr42− that features slow reduction kinetics and surface reduction pathway. Accordingly, the Au@Pd concave nanocubes take a smooth surface. This work demonstrates that both reduction kinetics and surface capping play important roles in controlling the morphology of metal nanocrystals and these two roles are often coupled to each other.  相似文献   
182.
Zhou  Ling  Zhu  Xiaorong  Su  Hui  Lin  Hongzhen  Lyu  Yanhong  Zhao  Xu  Chen  Chen  Zhang  Nana  Xie  Chao  Li  Yingying  Lu  Yuxuan  Zheng  Jianyun  Johannessen  Benrt  Jiang  San Ping  Liu  Qinghua  Li  Yafei  Zou  Yuqin  Wang  Shuangyin 《中国科学:化学(英文版)》2021,64(9):1586-1595
Electrochemical hydrogenation(ECH) of biomass-derived platform molecules is a burgeoning route for the sustainable utilization of hydrogen. However, the noble-metal-catalyzed ECH of phenolic compounds suffers from intense competition with hydrogen evolution reaction. We prepared Pt Rh bimetallic nanoparticles dispersed on highly ordered mesoporous carbon nanospheres, which improves the utilization efficiency of adsorbed hydrogen(Had) to ECH in H–UPD region(0 V vs. RHE).Further analysis reveals(i) the strong overlapping between the d-orbitals of Pt and Rh enhances specific adsorption of phenol;(ii)incorporation of Rh devotes an electronic effect on weakening the alloy–Hadinteraction to increase the FE of ECH. DFT calculations confirm the selectivity difference and the ECH parallel pathways: cyclohexanol and cyclohexanone are formed via hydrogenation/dehydrogenation of the intermediate *C6 H10 OH. These findings deepen our fundamental understanding of the ECH process, and cast new light on exploration of highly efficient electrocatalysts for biomass upgrading.  相似文献   
183.
184.
In this study, a new series of Cu(2)O nanocrystals with systematic shape evolution from cubic to face-raised cubic, edge- and corner-truncated octahedral, all-corner-truncated rhombic dodecahedral, {100}-truncated rhombic dodecahedral, and rhombic dodecahedral structures have been synthesized. The average sizes for the cubes, edge- and corner-truncated octahedra, {100}-truncated rhombic dodecahedra, and rhombic dodecahedra are approximately 200, 140, 270, and 290 nm, respectively. An aqueous mixture of CuCl(2), sodium dodecyl sulfate, NaOH, and NH(2)OH·HCl was prepared to produce these nanocrystals at room temperature. Simple adjustment of the amounts of NH(2)OH·HCl introduced enables this particle shape evolution. These novel particle morphologies have been carefully analyzed by transmission electron microscopy (TEM). The solution color changes quickly from blue to green, yellow, and then orange within 1 min of reaction in the formation of nanocubes, while such color change takes 10-20 min in the growth of rhombic dodecahedra. TEM examination confirmed the rapid production of nanocubes and a substantially slower growth rate for the rhombic dodecahedra. The rhombic dodecahedra exposing only the {110} facets exhibit an exceptionally good photocatalytic activity toward the fast and complete photodegradation of methyl orange due to a high number density of surface copper atoms, demonstrating the importance of their successful preparation. They may serve as effective and cheap catalysts for other photocatalytic reactions and organic coupling reactions.  相似文献   
185.
We report a simple solvothermal synthesis approach to the growth of CuInS(2) nanocrystals with zincblende- and wurtzite-phase structures. Zincblende nanocrystals with particle sizes of 10-20 nm were produced using oleylamine as the solvent. When ethylenediamine was used as the solvent, similarly sized wurtzite nanocrystals with some degree of particle aggregation were formed. Use of a mixture of these solvents gave products with mixed phases including some polyhedral nanostructures. The crystal phases of these nanocrystals were carefully determined by X-ray diffraction and transmission electron microscopy analysis. All the samples exhibit strong absorption from the entire visible light region to the near-infrared region beyond 1300 nm. Pure-phase zincblende and wurtzite CuInS(2) nanocrystals were employed as ink in the fabrication of solar cells. The spray-coated nanocrystal layer was subjected to a selenization process. A power conversion efficiency of ~0.74% and a good external quantum efficiency profile over broad wavelengths have been measured. The results demonstrate that wurtzite and zincblende CuInS(2) nanocrystals may be attractive precursors to light-absorbing materials for making efficient photovoltaic devices.  相似文献   
186.
A 3-D phase diagram of the HPC/H2O/H3PO4 tertiary system against various temperatures was established. Four distinct phases—the completely separated phase (S), the cloudy suspension phase (CS), the liquid crystalline miscible phase (LC), and the isotropically miscible phase (I)—were identified. The S phase shrank as the temperature increased, revealing that the HPC solubility increased with temperature, regardless of the LCST (lower critical solution temperature) characteristic. The addition of H3PO4 suppressed the formation of LC phase. However, as the temperature was raised sharply from 50 to 70?°C, the LC phase could only be maintained at high H3PO4 concentration region; it was a triangular shape, and the top apex of the triangle was the temperature-invariant L* point (HPC/H2O/H3PO4 38/9/53?wt%). The CS phase expanded considerably into the H2O-rich but H3PO4-poor region when the temperature continued to increase over 48?°C. The LCST points of the CS phase that contained 0 and 15?wt% of H3PO4 were 34 and 38?°C, respectively. These CS results demonstrate that H3PO4 suppresses the occurrence of LCST behavior. Additionally, the binodal curve exhibits a weak or even zero dependence of binodal temperature on the HPC concentration at HPC concentrations of less than 30?wt% in a pure water system. A hypothesis concerning the sequential desorption of water molecules was proposed to explain such behavior.  相似文献   
187.
依照GB 19790.1-2005,GB 19790.2-2005和GB/T 5009.34-2003(第二法),选取含量接近法规限值的代表性样品,从基准物质和标准滴定溶液溯源,探索测定一次性筷子中二氧化硫浸出量的数学模型,对检测过程中引入的不确定度进行了分类和量化,系统地评定了各个不确定度分量,得到该方法的相对标准不确定度为0.0043.  相似文献   
188.
The lasso of Tibshirani (1996) is a least-squares problem regularized by the l1 norm. Due to the sparseness promoting property of the l1 norm, the lasso has been received much attention in recent years. In this paper some basic properties of the lasso and two variants of it are exploited. Moreover, the proximal method and its variants such as the relaxed proximal algorithm and a dual method for solving the lasso by iterative algorithms are presented.  相似文献   
189.
We report the development of a facile method for the synthesis of Ag(2)O crystals with systematic shape evolution from cubic to edge- and corner-truncated cubic, rhombicuboctahedral, edge- and corner-truncated octahedral, octahedral, and hexapod structures by mixing AgNO(3), NH(4)NO(3), and NaOH at molar ratios of 1:2:11.8. A sufficient volume of NaOH solution was first added to a mixture of AgNO(3) and NH(4)NO(3) solution to promote the formation of Ag(NH(3))(2)(+) complex ions and the growth of Ag(2)O nanocrystals with good morphological control. The crystals are mostly submicrometer-sized. X-ray diffraction, scanning electron microscopy, and transmission electron microscopy characterization has been performed to determine the crystalline surface facets. A band gap value of approximately 1.45 eV has been found for the octahedral Ag(2)O crystals. By changing the molar ratios of AgNO(3)/NH(4)NO(3)/NaOH to 1:2:41.8, corner-depressed rhombicuboctahedra and elongated hexapods were obtained as a result of enhanced crystal growth along the [100] directions. Smaller nanocubes with average sizes of approximately 200 and 300 nm and octapods can also be prepared by adjusting the reagent molar ratios and their added volumes. Both the octahedra and hexapods with largely silver atom-terminated {111} surface facets responded repulsively and moved to the surface of the solution when dispersing in a solution of positively charged methylene blue, but can be suspended in a negatively charged methyl orange solution. The cubes and octapods, bounded by the {100} faces, were insensitive to the molecular charges in solution. The dramatic facet-dependent surface properties of Ag(2)O crystals have been demonstrated.  相似文献   
190.
Proteins containing starch-binding domains (SBDs) are used in a variety of scientific and technological applications. A circularly permutated SBD (CP90) with improved affinity and selectivity toward longer-chain carbohydrates was synthesized, suggesting that a new starch-binding protein may be developed for specific scientific and industrial applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号