首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18588篇
  免费   3327篇
  国内免费   1712篇
化学   13053篇
晶体学   179篇
力学   1026篇
综合类   67篇
数学   2026篇
物理学   7276篇
  2024年   38篇
  2023年   393篇
  2022年   568篇
  2021年   672篇
  2020年   732篇
  2019年   736篇
  2018年   716篇
  2017年   565篇
  2016年   956篇
  2015年   817篇
  2014年   1047篇
  2013年   1386篇
  2012年   1718篇
  2011年   1778篇
  2010年   1167篇
  2009年   1096篇
  2008年   1207篇
  2007年   1049篇
  2006年   1001篇
  2005年   798篇
  2004年   610篇
  2003年   432篇
  2002年   435篇
  2001年   334篇
  2000年   276篇
  1999年   390篇
  1998年   279篇
  1997年   295篇
  1996年   284篇
  1995年   245篇
  1994年   212篇
  1993年   215篇
  1992年   146篇
  1991年   160篇
  1990年   129篇
  1989年   99篇
  1988年   89篇
  1987年   75篇
  1986年   68篇
  1985年   54篇
  1984年   57篇
  1983年   30篇
  1982年   32篇
  1981年   23篇
  1980年   26篇
  1978年   13篇
  1976年   16篇
  1975年   15篇
  1973年   15篇
  1968年   14篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
261.
Improved understanding of the effect of protein glycosylation is expected to provide the foundation for the design of protein glycoengineering strategies. In this study, we examine the impact of O-glycosylation on the binding selectivity of a model Family 1 carbohydrate-binding module (CBM), which has been shown to be one of the primary sub-domains responsible for non-productive lignin binding in multi-modular cellulases. Specifically, we examine the relationship between glycan structure and the binding specificity of the CBM to cellulose and lignin substrates. We find that the glycosylation pattern of the CBM exhibits a strong influence on the binding affinity and the selectivity between both cellulose and lignin. In addition, the large set of binding data collected allows us to examine the relationship between binding affinity and the correlation in motion between pairs of glycosylation sites. Our results suggest that glycoforms displaying highly correlated motion in their glycosylation sites tend to bind cellulose with high affinity and lignin with low affinity. Taken together, this work helps lay the groundwork for future exploitation of glycoengineering as a tool to improve the performance of industrial enzymes.

Improved understanding of the effect of protein glycosylation is expected to provide the foundation for the design of protein glycoengineering strategies.

The cell walls of terrestrial plants primarily comprise the polysaccharides cellulose, hemicellulose, and pectin, as well as the heterogeneous aromatic polymer, lignin. In nature, carbohydrates derived from plant polysaccharides provide a massive carbon and energy source for biomass-degrading fungi, bacteria, and archaea, which together are the primary organisms that recycle plant matter and are a critical component of the global carbon cycle. Across the various environments in which these microbes break down lignocellulose, a few known enzymatic and chemical systems have evolved to deconstruct polysaccharides to soluble sugars.1–6 These natural systems are, in several cases, being evaluated for industrial use to produce sugars for further conversion into renewable biofuels and chemicals.From an industrial perspective, overcoming biomass recalcitrance to cost-effectively produce soluble intermediates, including sugars for further upgrading remains the main challenge in biomass conversion. Lignin, the evolution of which in planta provided a significant advantage for terrestrial plants to mitigate microbial attack, is now widely recognized as a primary cause of biomass recalcitrance.7 Chemical and/or biological processing scenarios of lignocellulose have been evaluated8 and several approaches have been scaled to industrial biorefineries to date. Many biomass conversion technologies overcome recalcitrance by partially or wholly removing lignin from biomass using thermochemical pretreatment or fractionation. This approach enables easier polysaccharide access for carbohydrate-active enzymes and/or microbes. There are however, several biomass deconstruction approaches that employ enzymes or microbes with whole, unpretreated biomass.9,10 In most realistic biomass conversion scenarios wherein enzymes or microbes are used to depolymerize polysaccharides, native or residual lignin remains.11,12 It is important to note that lignin can bind and sequester carbohydrate-active enzymes, which in turn can affect conversion performance.13Therefore, efforts aimed at improving cellulose binding selectivity relative to lignin have emerged as major thrusts in cellulase studies.14–25 Multiple reports in the past a few years have made exciting new contributions to our collective understanding of how fungal glycoside hydrolases, which are among the most well-characterized cellulolytic enzymes given their importance to cellulosic biofuels production, bind to lignin from various pretreatments.15,17 Taken together, these studies have demonstrated that the Family 1 carbohydrate-binding modules (CBMs) often found in fungal cellulases are the most relevant sub-domains for non-productive binding to lignin,15,17,20,26 likely due to the hydrophobic face of these CBMs that is known to be also responsible for cellulose binding (Fig. 1).27Open in a separate windowFig. 1Model of glycosylated CBM binding the surface of a cellulose crystal. Glycans are shown in green with oxygen atoms in red, tyrosines known to be critical to binding shown in purple, and disulfide bonds Cys8–Cys25 and Cys19–Cys35 in yellow.Furthermore, several studies have been published recently using protein engineering of Family 1 CBMs to improve CBM binding selectivity to cellulose with respect to lignin. Of particular note, Strobel et al. screened a large library of point mutations in both the Family 1 CBM and the linker connecting the catalytic domain (CD) and CBM.21,22 These studies demonstrated that several mutations in the CBM and one in the linker led to improved cellulose binding selectivity compared to lignin. The emerging picture is that the CBM-cellulose interaction, which occurs mainly as a result of stacking between the flat, hydrophobic CBM face (which is decorated with aromatic residues) and the hydrophobic crystal face of cellulose I, is also likely the main driving force in the CBM-lignin interaction given the strong potential for aromatic–aromatic and hydrophobic interactions.Alongside amino acid changes, modification of O-glycosylation has recently emerged as a potential tool in engineering fungal CBMs, which Harrison et al. demonstrated to be O-glycosylated.28–31 In particular, we have revealed that the O-mannosylation of a Family 1 CBM of Trichoderma reesei cellobiohydrolase I (TrCel7A) can lead to significant enhancements in the binding affinity towards bacterial microcrystalline cellulose (BMCC).30,32,33 This observation, together with the fact that glycans have the potential to form both hydrophilic and hydrophobic interactions with other molecules, led us to hypothesize that glycosylation may have a unique role in the binding selectivity of Family 1 CBMs to cellulose relative to lignin and as such, glycoengineering may be exploited to improve the industrial performance of these enzymes. To test this hypothesis, in the present study, we systematically probed the effects of glycosylation on CBM binding affinity for a variety of lignocellulose-derived cellulose and lignin substrates and investigated routes to computationally predict the binding properties of different glycosylated CBMs.  相似文献   
262.
Benzene, toluene, ethylbenzene, and xylenes (BTEX) are commonly found in crude oil and are used in geochemical investigations as direct indicators of the presence of oil and gas. BTEX are easily volatile and can be degraded by microorganisms, which affect their precise measurement seriously. A method for determining the biodegradation process of BTEX in seabed sediment using dynamic headspace (purge and trap) gas chromatography with a photoionization detector (PID) was developed, which had a detection limit of 7.3–13.2 ng L?1 and a recovery rate of 91.6–95.0%. The decrease in the concentration of BTEX components was monitored in seabed sediment samples, which was caused by microorganism biodegradation. The results of BTEX biodegradation process were of great significance in the collection, transportation, preservation, and measurement of seabed sediment samples in the geochemical investigations of oil and gas.  相似文献   
263.
本文使用涂金石墨管,自制氢化物石墨炉进样系统及连续流动氢化物发生器,直接测定了粮食,植物及水中的痕量汞。该法实用性强,线性范围宽,精密度好,准确度高。灵敏度为1.1ng/L,检出限(3σ)为0.8ng/L。  相似文献   
264.
In this communication, we report a successful synthesis of quasi-monodisperse In2O3 nanocrystals with high crystallinity in a high-temperature organic solution. The average size of nanocrystals can be tuned using a dynamic injection technique. TEM and XRD investigations indicate that each nanocrystal is a single crystal. The optical determination implies that the photoluminescence behavior of these In2O3 nanocrystals is different from that of the bulk, probably due to the combination of weak quantum-confinement-effects and the nature of high crystallinity in nanocrystals.  相似文献   
265.
Ma S  Wu B  Zhao S 《Organic letters》2003,5(23):4429-4432
[reaction: see text] A mild and efficient methodology involving PdCl(2)-catalyzed cyclocarbonylation of 2-alkynols with CuCl(2) for the synthesis of (Z)-alpha-chloroalkylidene-beta-lactones was developed. Using the readily available optically active propargylic alcohols allows convenient synthesis of the corresponding (Z)-alpha-chloroalkylidene-beta-lactones with high ee values. cis-Chloropalladation was observed as the major pathway, which is unique as compared to the reported data.  相似文献   
266.
Ma  Xuanlong  Su  Huadong 《Ricerche di matematica》2022,71(2):381-390
Ricerche di Matematica - The power graph $${\mathcal {P}}_{G}$$ of a finite group G is the graph whose vertex set is G, two distinct vertices are adjacent if one is a power of the other. The order...  相似文献   
267.
LaSrBO4(B=Cu、Ni、 Co、 Fe、 Mn、 Cr ) was studied with respect to their preparation, characteristics and catalytic oxidation activity by means of XRD, XPS, electric conductivity and activity evaluation. Results showed that the calcination temperature has great influence on the formation of the phases of such samples, and was associated with the radius of B ion. The greater the B ion radius, the higher the calcination temperature required for the formation of the phases. It was also found that the activity and the relative content of adsorptive oxygen and lattice oxygen on the sample surf are, the activation energy of electron conduction and the CO oxidation activity may vary with different B ions, and demonstrate a dual-peak pattern with the increase in the number of 3d electrons of the B ion.  相似文献   
268.
The yrast band in the doubly odd156Tm nucleus was studied through144Sm(19F,2p5n)156Tm reaction at beam energy of 105MeV. Several high-spin states of156Tm were identified and the highest spin of the band with configuration7/2[523] v1/2+[660] could be built up to spin 25. The level structure shows the onset of a non- or weak collectivity which generally appears at neutron number of 87 in neutron-deficient rare-earth nuclei.This work was supported in part by the Fok Ying Tung Education Foundation and the Natural Science Fund of China.  相似文献   
269.
270.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号