首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21839篇
  免费   2892篇
  国内免费   3509篇
化学   17292篇
晶体学   396篇
力学   934篇
综合类   313篇
数学   2379篇
物理学   6926篇
  2024年   23篇
  2023年   204篇
  2022年   446篇
  2021年   564篇
  2020年   603篇
  2019年   685篇
  2018年   581篇
  2017年   521篇
  2016年   860篇
  2015年   955篇
  2014年   1142篇
  2013年   1594篇
  2012年   1828篇
  2011年   1849篇
  2010年   1432篇
  2009年   1410篇
  2008年   1675篇
  2007年   1521篇
  2006年   1395篇
  2005年   1189篇
  2004年   1083篇
  2003年   949篇
  2002年   1055篇
  2001年   832篇
  2000年   647篇
  1999年   514篇
  1998年   329篇
  1997年   319篇
  1996年   263篇
  1995年   240篇
  1994年   219篇
  1993年   190篇
  1992年   182篇
  1991年   134篇
  1990年   123篇
  1989年   101篇
  1988年   58篇
  1987年   66篇
  1986年   52篇
  1985年   49篇
  1984年   36篇
  1983年   26篇
  1982年   17篇
  1981年   17篇
  1980年   36篇
  1978年   34篇
  1977年   55篇
  1976年   26篇
  1975年   23篇
  1974年   16篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
981.
3D perovskite CsPbBr3 has recently taken a blooming position for optoelectronic applications. However, due to the lack of natural anisotropy of optical attributes, it is a great challenge to fulfil polarization-sensitive photodetection. Here, for the first time, we exploited dimensionality reduction of CsPbBr3 to tailor a 2D-multilayered hybrid perovskite, (TRA)2CsPb2Br7 ( 1 , in which TRA is (carboxy)cyclohexylmethylammonium), serving as a potential polarized-light detecting candidate. Its unique quantum-confined 2D structure results in intrinsic anisotropy of electrical conductivity, optical absorbance, and polarization-dependent responses. Particularly, it exhibits remarkable dichroism with the photocurrent ratio (Ipc/Ipa) of ≈2.1, being much higher than that of the isotropic CsPbBr3 crystal and reported CH3NH3PbI3 nanowire (≈1.3), which reveals its great potentials for polarization-sensitive photodetection. Further, crystal-based detectors of 1 show fascinating responses to the polarized light, including high detectivity (>1010 Jones), fast responding time (≈300 μs), and sizeable on/off current ratios (>104). To our best knowledge, this is the first study on 2D Cs-based hybrid perovskite exhibiting strong polarization-sensitivity. The work highlights an effective pathway to explore new polarization sensitive candidates for hybrid perovskites and promotes their future electronic applications.  相似文献   
982.
π–π Stacking is omnipresent not only in nature but in a wide variety of practical fields applied to our lives. Because of its importance in a performance of natural and artificial systems, such as light harvesting system and working layer in device, many researchers have put intensive effort into identifying its underlying nature. However, for the case of π–π stacked systems composed of antiaromatic units, the understanding of the fundamental mechanisms is still unclear. Herein, we synthesized a new type of planar β,β’-phenylene-bridged hexaphyrin (1.0.1.0.1.0), referred as naphthorosarin which possesses the 24π-electron conjugated pathway. Especially, the corresponding antiaromatic porphyrinoid shows the unique property to form dimeric species adopting the face-to-face geometry which is unprecedented in cases of known annulated naphthorosarins. In order to elucidate the intriguing properties derived from the stacked dimer, the current study focuses on the experimental support to rationalize the observed π–π interactions between the two subunits.  相似文献   
983.
The anion exchange membranes (AEMs) with both high ionic conductivity and alkali stability are always the research focus of the AEM fuel cells. Here, a novel nonplanar polymer for AEMs manufacture, mPBI‐TP‐x‐R, with excellent hydroxide stability and satisfactory processability is reported for the first time. The serial mPBI‐TP‐x resins with steric hindrance were prepared by copolymerization among 3,3′,4,4′‐tetraaminobiphenyl, isophthalic acid and tetraphenyl‐terephthalic acid (TP) in different ratios under microwave condensation. The copolymers mPBI‐TP‐x were quaternized at N1/N3‐sites of benzimidazole unit in backbone with alkyl groups (R?CH3, C2H5, n‐C3H7, or n‐C4H9) to prepare soluble ionomers, and the corresponding membranes in hydroxyl ion form were prepared by a solution casting method and subsequent ion‐exchange process. The chemical structure of all membranes was characterized using FTIR and 1H NMR spectroscopy. The properties of ion exchange capacity, water uptake, swelling ratio, tensile strength, ionic conductivity, and alkaline stability were measured. Among the prepared membranes, the mPBI‐TP‐15%‐(n‐Bu) exhibited the excellent alkaline stability (only degradation ca. 5% under 1M NaOH aqueous solution at 60 °C for 800 h) and satisfactory OH? conductivity (46.66 mS/cm at 80 °C). The current research provides a useful exploration to commercial application of alkaline fuel cell. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 1087–1096  相似文献   
984.
Zhang  Ruili  Liu  Jian  Qin  Hong  Tang  Yifa 《Numerical Algorithms》2019,81(4):1521-1530
Numerical Algorithms - Gyrocenter dynamics of charged particles plays a fundamental and important role in plasma physics, which requires accuracy and conservation in a long-time simulation....  相似文献   
985.
Let E?R be an interval. By studying an admissible family of branching mechanisms{ψt,t ∈E} introduced in Li [Ann. Probab., 42, 41-79(2014)], we construct a decreasing Levy-CRT-valued process {Tt, t ∈ E} by pruning Lévy trees accordingly such that for each t ∈E, Tt is a ψt-Lévy tree. We also obtain an analogous process {Tt*,t ∈E} by pruning a critical Levy tree conditioned to be infinite. Under a regular condition on the admissible family of branching mechanisms, we show that the law of {Tt,t ∈E} at the ascension time A := inf{t ∈E;Tt is finite} can be represented by{Tt*,t∈E}.The results generalize those studied in Abraham and Delmas [Ann. Probab., 40, 1167-1211(2012)].  相似文献   
986.
987.
Self‐emulsion polymerization (SEP), a green route developed by us for the polymerization of amphiphilic monomers, does not require any emulsifier or an organic solvent except that the water‐soluble initiators such as 2,2′‐azobis[2‐(2‐imidazolin‐2‐yl)propane]dihydrochloride (VA‐044) and potassium persulfate (KPS) are only used. We report here the polymer nanoscaffolds from a number of amphiphilic monomers, which can be used for in situ encapsulation of a variety of nanoparticles. As a demonstration of the efficacy of these nanoscaffolds, the synthesis of a biocompatible hybrid nanoparticle (nanohybrid), prepared by encapsulating Fe3O4 magnetic nanoparticle (Fe3O4 MNPs) in poly(2‐hydroxyethyl methacrylate) in water, for MRI application is presented. The nanohybrid prepared following the SEP in the form of an emulsion does not involve the use of any stabilizing agent, crosslinker, polymeric emulsifier, or surfactant. This water‐soluble, spherical, and stable nanohybrid containing Fe3O4 MNPs of average size 10 ± 2 nm has a zeta potential value of ?41.89 mV under physiological conditions. Magnetic measurement confirmed that the nanohybrid shows typical magnetic behavior having a saturation magnetization (Ms) value of 32.3 emu/g and a transverse relaxivity (r2) value of 29.97 mM?1 s?1, which signifies that it can be used as a T2 contrast agent in MRI. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019  相似文献   
988.
A simple method for nanocrystalline cellulose (NCC)/fluorinated polyacrylate was developed by RAFT‐mediated surfactant‐free emulsion polymerization, in which the nanocomposites formed a core‐shell spherical morphology. The influence of the content of NCC‐g‐(PAA‐b‐PHFBA) (AA was acrylic acid, HFBA was hexafluorobutyl acrylate) on the properties of latex and film were systematically studied. The monomer conversion, the tensile strength, and water–oil repellency of film increased first and then decreased, the latex particle size decreased first and then decreased, when the content of NCC‐g‐(PAA‐b‐PHFBA) increased from 1 to 6 wt %. Elongation at break and thermal stability distinctly decreased when the content of NCC‐g‐(PAA‐b‐PHFBA) gradually increased. XPS showed that the fluorine‐containing groups well concentrated at the film–air interfaces during the annealing process. SEM analysis revealed that the treated fiber had a rugged surface, and the treated fabric had an excellent water repellency. In addition, this green grafting method in water offered a new perspective for the fabrication of exceptional NCC‐based nanocomposites with NCC as the core and also helped to promote the potential applicability of NCC in a range of multipurpose applications. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1305–1314  相似文献   
989.
Two LnIII ions are sandwiched by dinuclear CoII building blocks derived from a tris‐triazamacrocyclic ligand bearing pendant carboxylic acid functionality, 1,3,5‐tris((4,7‐bis(2‐carboxyethyl)‐1,4,7‐triazacyclonon‐1‐yl)methyl)‐benzene (H6L), giving rising to two nanoscale heterometallic metal–organic cages formulated as [Co4Ln2(LH2.5)2(H2O)4]·(ClO4)6·NO3·nH2O [Ln = Dy, n = 12 ( 1 ); Ln = Yb, n = 9 ( 2 )], whose internal cavity accommodates a guest NO3? anion. Their hexanuclear cage‐like architectures are maintained both in solution and solid states as confirmed by mass spectrum as well as X‐ray diffraction experiments. These two cages display ligand‐based fluorescence emissions and therefore both were chosen to be operated as fluorescent chemosensors for the detection of nitroaromatic compounds. Attractively, these metal–organic cages allow highly selective and sensitive detection of picric acid (PA) over other nitroaromatics in solution and suspension, and the fluorescence resonance energy transfer (FRET) between the cage probes and PA is mainly responsible for the remarkable detection efficiency.  相似文献   
990.
Metal oxide photocatalysts (MOPCs) decompose organic molecules under illumination. However, the application of MOPCs in industry and research is currently limited by their intrinsic hydrophilicity because MOPCs can be wetted by most liquids. To achieve liquid repellency, the surface needs to possess a low surface energy, but most organic molecules with low surface energy are degraded by photocatalytic activity. Herein, current methods to achieve liquid repellency on MOPCs, while preventing degradation of hydrophobic coatings, are reviewed. Classically, composite materials containing MOPCs and hydrophobic organic compounds possess good liquid repellency. However, composites normally form irregular coatings and are hard to prepare on surfaces such as those that are mesoporous or nanostructured. In addition, the adhesion of composites to substrates is often weak, resulting in delamination. Recent studies have shown that the direct grafting reaction of polydimethylsiloxane (PDMS) from silicone oil (methyl-terminated PDMS) under illumination results in a stable polymer brush. This easy and simple grafting method allows us to create stable liquid-repellent surfaces on MOPCs of various types, structures, and sizes. In particular, super-liquid-repellent drops with an underlying air layer can be created on PDMS-grafted nano-/microstructured MOPCs. Potential applications of surfaces combining liquid repellency and photocatalytic activity are also discussed; thus offering new ways of using MOPCs in a wider range of applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号