首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20644篇
  免费   3181篇
  国内免费   3958篇
化学   16213篇
晶体学   438篇
力学   944篇
综合类   377篇
数学   2410篇
物理学   7401篇
  2024年   22篇
  2023年   171篇
  2022年   509篇
  2021年   524篇
  2020年   556篇
  2019年   614篇
  2018年   540篇
  2017年   557篇
  2016年   773篇
  2015年   897篇
  2014年   1072篇
  2013年   1529篇
  2012年   1632篇
  2011年   1702篇
  2010年   1381篇
  2009年   1380篇
  2008年   1696篇
  2007年   1537篇
  2006年   1437篇
  2005年   1242篇
  2004年   1096篇
  2003年   954篇
  2002年   1090篇
  2001年   870篇
  2000年   735篇
  1999年   543篇
  1998年   339篇
  1997年   316篇
  1996年   270篇
  1995年   251篇
  1994年   211篇
  1993年   220篇
  1992年   180篇
  1991年   145篇
  1990年   134篇
  1989年   119篇
  1988年   86篇
  1987年   85篇
  1986年   56篇
  1985年   45篇
  1984年   43篇
  1983年   33篇
  1982年   31篇
  1981年   40篇
  1980年   23篇
  1979年   19篇
  1978年   17篇
  1977年   9篇
  1976年   11篇
  1973年   9篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
951.
Keratin is widely recognized as a high‐quality renewable protein resource for biomedical applications. Despite their extensive existence, keratin resources such as feathers, wool, and hair exhibit high stability and mechanical properties because of their high disulfide bond content. Consequently, keratin extraction is challenging and its application is greatly hindered. In this work, a biological extraction strategy is proposed for the preparation of bioactive keratin and the fabrication of self‐assembled keratin hydrogels (KHs). Based on moderate and controlled hydrolysis by keratinase, keratin with a high molecular weight of approximately 45 and 28 kDa that retain its intrinsic bioactivities is obtained. The keratin products show excellent ability to promote cell growth and migration and are conferred with significant antioxidant ability because of their intrinsically high cysteine content. In addition, without the presence of any cross‐linking agent, the extracted keratin can self‐assemble into injectable hydrogels. The KHs exhibit a porous network structure and 3D culture ability, showing potential in promoting wound healing. This enzyme‐driven keratin extraction strategy opens up a new approach for the preparation of keratin that can self‐assemble into injectable hydrogels for biomedical engineering.  相似文献   
952.
Two new coordination complexes based on benzimidazole dicarboxylic acid, Zn(Hbidc)?H2O ( 1 ) and Cd(Hbidc)(H2O) ( 2 ), have been synthesized under hydrothermal conditions. The complexes were characterized using elemental analysis, infrared and UV–visible spectroscopies, powder X‐ray diffraction, thermogravimetry and single‐crystal X‐ray diffraction. Structural analyses showed that the crystal structures of 1 and 2 are different, due to the various modes of linking of the benzimidazole dicarboxylic acid. Complex 1 has a two‐dimensional network structure and 2 has a three‐dimensional network structure. In addition, we studied the performance of the fluorescence response of two complexes. Results showed that the complexes can be used as chemical sensors for multifunctional testing, such as for UO22+, xanthine and Fe3+ ions. Even if the concentration is very low, they could also be detected, showing that coordination complexes 1 and 2 have very high fluorescence sensitivity. The detection limit for UO22+ is 5.42 nM ( 1 ) and 0.02 nM ( 2 ), that for xanthine is 1.37 nM ( 1 ) and 0.28 nM ( 2 ), and that for Fe3+ ions is 0.76 nM ( 1 ) and 0.62 nM ( 2 ).  相似文献   
953.
Bicyclol is a synthetic drug widely used to treat chronic hepatitis B. This study aimed to develop a selective, sensitive and high‐throughput liquid chromatography–tandem mass spectrometric method for the detection of bicyclol in human plasma. Bicyclol was detected using a multiple reaction monitoring mode, with ammonium adduct ions (m/z 408.2) as the precursor ion and the [M‐CH3]+ ion (m/z 373.1) subjected to demethylation as the product ion. Chromatographic separation was achieved using a Zobax Eclipse XDB‐C18 column with a gradient elution and a mobile phase of 2 mm ammonium formate and acetonitrile. Bicyclol was extracted from plasma matrix by precipitation. A linear detection response was obtained for bicyclol ranging from 0.500 to 240 ng/mL, and the lower limit of quantification was 0.500 ng/mL. The intra‐ and inter‐day precisions were all ≤7.4%, and the accuracies were within ±6.0%. The extraction recovery was >95.9%, and the matrix effects were between 96.0% and 108%. Bicyclol was found to be unstable in human plasma at room temperature, but the degradation was minimized by conducting sample collection and preparation in an ice bath. The validated method was successfully applied to investigate the pharmacokinetics of bicyclol tablets in six healthy Chinese volunteers.  相似文献   
954.
Detailed gas-phase chemical kinetic models are widely used in combustion research, and many new mechanisms for different fuels and reacting conditions are developed each year. Recent works have highlighted the need for error checking when preparing such models, but a useful community tool to perform such analysis is missing. In this work, we present a simple online tool to screen chemical kinetic mechanisms for bimolecular reactions exceeding collision limits. The tool is implemented on a user-friendly website, cloudflame.kaust.edu.sa, and checks three different classes of bimolecular reactions; (ie, pressure independent, pressure-dependent falloff, and pressure-dependent PLOG). In addition, two other online modules are provided to check thermodynamic properties and transport parameters to help kinetic model developers determine the sources of errors for reactions that are not collision limit compliant. Furthermore, issues related to unphysically fast timescales can remain an issue even if all bimolecular reactions are within collision limits. Therefore, we also present a procedure to screen ultrafast reaction timescales using computational singular perturbation. For demonstration purposes only, three versions of the rigorously developed AramcoMech are screened for collision limit compliance and ultrafast timescales, and recommendations are made for improving the models. Larger models for biodiesel surrogates, tetrahydropyran, and gasoline surrogates are also analyzed for exemplary purposes. Numerical simulations with updated kinetic parameters are presented to show improvements in wall-clock time when resolving ultrafast timescales.  相似文献   
955.
Necessary and sufficient conditions for qualitative properties of infinite dimensional linear programing problems such as solvability, duality, and complementary slackness conditions are studied in this article. As illustrations for the results, we investigate the parametric version of Gale’s example.  相似文献   
956.
A metal-free, visible-light-induced oxidative C−C bond cleavage of cycloketones with molecular oxygen is described. Cooperative Brønsted-acid catalysis and photocatalysis enabled selective C−C bond cleavage of cycloketones to generate an array of γ-, δ- and ϵ-keto esters under very mild conditions. Mechanistic studies indicate that singlet molecular oxygen (1O2) is responsible for this transformation.  相似文献   
957.
Nonuniform nucleation is one of the major reasons for the dendric growth of metallic lithium, which leads to intractable problems in the efficiency, reversibility, and safety in Li-based batteries. To improve the deposition of metallic Li on Cu substrates, herein, a freestanding current collector (NGDY@CuNW) is formed by coating pyridinic nitrogen-doped graphdiyne (NGDY) nanofilms on 3D Cu nanowires (CuNWs). Theoretical predictions reveal that the introduction of nitrogen atoms in the 2D GDY can enhance the binding energy between the Li atom and GDY, therefore improving the lithiophilicity on the surface for uniform lithium nucleation and deposition. Accordingly, the deposited metallic Li on the NGDY@CuNW electrode exhibits a dendrite-free morphology, resulting in significant improvements in terms of the reversibility with a high coulombic efficiency (CE) and a long lifespan at high current density. Our research provides an efficient method to control the surface property of Cu, which also will be instructive for other metal batteries.  相似文献   
958.
Well‐defined star‐shaped hydrophobic poly(ε‐caprolactone) (PCL) and hydrophilic poly(ethylene glycol) (PEG) amphiphilic conetworks (APCNs) have been synthesized via the combination of ring opening polymerization (ROP) and click chemistry. Alkyne‐terminated six arm star‐shaped PCL (6‐s‐PCLx‐C?CH) and azido‐terminated PEG (N3‐PEG‐N3) are characterized by 1H NMR and FT‐IR. The swelling degree of the APCNs is determined both in water and organic solvent. This unique property of the conetworks is dependent on the nanophase separation of hydrophilic and hydrophobic phases. The morphology and thermal behaviors of the APCNs are investigated by SEM and DSC respectively. The biocompatibility is determined by water soluble tetrazolium salt reagents (WST‐1) assay, which shows the new polymer networks had good biocompatibility. Through in vitro release of paclitaxel (PTX) and doxorubicin (DOX), the APCNs is confirmed to be promising drug depot materials for sustained hydrophobic and hydrophilic drugs. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 407–417  相似文献   
959.
Four Zn(II) complexes, [Zn L 2(SO4)]n ( 1 ), [Zn L 4(H2O)2]?2(NO3)?4EtOH ( 2 ), [Zn L 2Cl2]? L ( 3 ), and [Zn L 2Br2]? L ( 4 ) ( L  = uniconazole), were synthesized using a hydrothermal method and characterized by elemental analysis, FT‐IR spectroscopy, and single‐crystal XRD. Complex 1 formed a one‐dimensional polymer chain. However, complexes 2 ‐ 4 were obtained as zero‐dimensional mononuclear coordination compounds. The antifungal activities of these complexes were then evaluated against four selected fungi using the mycelial growth rate method. The resulting data indicate that all complexes show better antifungal activities than their ligands and mixtures. In addition, the interactions between the metal salts of complexes 1 ‐ 4 and uniconazole seem to be synergistic. Furthermore, the polymer chain structure of complex 1 significantly enhanced the bioactivity, especially against Botryosphaeria ribis ( I ). Density functional theory (DFT) calculations were carried out to help explain the enhanced bioactivity after the formation of Zn(II) complexes. The resulting data show that the HOMO–LUMO energy gaps of complexes 1 ‐ 4 (0.0578, 0.0946, 0.1053, and 0.1245 eV) are smaller than that of the free ligand (0.1247 eV) and correlate with the antifungal activity of the zinc complexes.  相似文献   
960.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号