首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   83342篇
  免费   14953篇
  国内免费   8656篇
化学   74867篇
晶体学   1064篇
力学   2903篇
综合类   658篇
数学   7647篇
物理学   19812篇
  2024年   146篇
  2023年   796篇
  2022年   1578篇
  2021年   1838篇
  2020年   2841篇
  2019年   4072篇
  2018年   2462篇
  2017年   2188篇
  2016年   5290篇
  2015年   5556篇
  2014年   6045篇
  2013年   7434篇
  2012年   7111篇
  2011年   6539篇
  2010年   6029篇
  2009年   5833篇
  2008年   5694篇
  2007年   4890篇
  2006年   4362篇
  2005年   3931篇
  2004年   3347篇
  2003年   2924篇
  2002年   3690篇
  2001年   2793篇
  2000年   2443篇
  1999年   1431篇
  1998年   774篇
  1997年   707篇
  1996年   617篇
  1995年   548篇
  1994年   508篇
  1993年   426篇
  1992年   374篇
  1991年   321篇
  1990年   266篇
  1989年   225篇
  1988年   155篇
  1987年   133篇
  1986年   135篇
  1985年   114篇
  1984年   56篇
  1983年   42篇
  1982年   39篇
  1981年   28篇
  1980年   24篇
  1979年   16篇
  1978年   19篇
  1977年   14篇
  1959年   15篇
  1957年   19篇
排序方式: 共有10000条查询结果,搜索用时 93 毫秒
101.
The passive control of bluff body flows using porous media is investigated by means of the penalization method. This method is used to create intermediate porous media between solid obstacles and the fluid in order to modify the boundary layer behaviour. The study covers a wide range of two‐dimensional flows from low transitional flow to fully established turbulence by direct numerical simulation of incompressible Navier–Stokes equations. A parametric study is performed to illustrate the effect of the porous layer permeability and thickness on the passive control. The numerical results reveal the ability of porous media to both regularize the flow and to reduce the drag forces up to 30%. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
102.
The central zinc(II) atom in the title complex is tetrahedrally coordinated by four nitrogen atoms derived from 4‐methyl‐5‐imidazolecarboxyaldehyde ligands with Zn? N in the range 2.007(3) to 2.026(4) Å. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
103.
A one‐dimensional zinc(II) coordination polymer has been constructed from zinc(II), 4,4′‐biphenyldicarboxylate and pyridine in which each zinc(II) atom is coordinated by two pyridine ligands and two monodentate 4,4′‐biphenyldicarboxylate ligands that define a distorted tetrahedral geometry. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
104.
A novel epoxy system was developed through the in situ curing of bisphenol A type epoxy and 4,4′‐diaminodiphenylmethane with the sol–gel reaction of a phosphorus‐containing trimethoxysilane (DOPO–GPTMS), which was prepared from the reaction of 9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene‐10‐oxide (DOPO) with 3‐glycidoxypropyltrimethoxysilane (GPTMS). The preparation of DOPO–GPTMS was confirmed with Fourier transform infrared, 1H and 31P NMR, and elemental analysis. The resulting organic–inorganic hybrid epoxy resins exhibited a high glass‐transition temperature (167 °C), good thermal stability over 320 °C, and a high limited oxygen index of 28.5. The synergism of phosphorus and silicon on flame retardance was observed. Moreover, the kinetics of the thermal oxidative degradation of the hybrid epoxy resins were studied. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2354–2367, 2003  相似文献   
105.
A series of side‐chain liquid‐crystalline (LC) homopolymers of poly[6‐(4‐methoxy‐4′‐oxy‐azobenzene) hexyl methacrylate] with different degrees of polymerization were synthesized by atom transfer radical polymerization (ATRP), which were prepared with a wide range of number‐average molecular weights from 5.1 × 103 to 20.6 × 103 with narrow polydispersities of around 1.17. Thermal investigation showed that the homopolymers exhibit two mesophases, a smectic phase, and a nematic phase, and the phase‐transition temperatures of the homopolymers increase clearly with increasing molecular weights. A series of novel LC coil triblock copolymers with narrow polydispersities was synthesized by ATRP, and their thermotropic phase behavior was investigated with differential scanning calorimetry and polarized optical microscopy. The LC coil triblocks were designed to have an LC conformation of poly[6‐(4‐methoxy‐4′‐oxy‐azobenzene) hexyl methacrylate] with a wide range of molecular weights from 3.5 × 103 to 1.7 × 104 and the coil conformation of poly(ethylene glycol) (PEG) (number‐average molecular weight: 6000 or 12,000) segment. Their characterization was investigated with 1H NMR, Fourier transform infrared spectra, and gel permeation chromatography. Triblock copolymers exhibited a crystalline phase, a smectic phase, and a nematic phase. The phase‐transition temperatures from the smectic to nematic phase and from the nematic to isotropic phase increased, and the crystallization of PEG depressed with increasing molecular weight of the LC block. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2854–2864, 2003  相似文献   
106.
Supramolecular side chain liquid crystalline polymers (SCLCPs) based on poly(3-carboxypropylmethylsiloxane-co-dimethylsiloxane) (PSIX, X=100, 76, 60, 41 or 23, denoting the mole percentage of 3-carboxypropylmethylsiloxane unit in the polymer) and stilbazole derivatives have been obtained through intermolecular hydrogen bonding (H-bonding) interactions between the carboxylic acid and the pyridyl moieties. The formation of H-bonding and self-assembly results in the formation of new mesogenic units, in which H-bonds function as molecular connectors. FTIR shows the existence of H-bonding in the complexes. The polymeric complexes behave as single component liquid crystalline polymers and exhibit stable and enantiotropic mesophases. The liquid crystalline properties of the supramolecular SCLCPs were studied using differential scanning calorimetry, polarizing optical microscopy and X-ray diffraction, and were found to exhibit smectic A phases with focal-conic textures. The thermal stability of the SCLCP increases on increasing the carboxylic acid content in the polysiloxane and the concentration of the stilbazole derivative in the complex. However, the thermal stability decreases on increasing the chain length of the stilbazole derivative. The crystal phase was not formed even on cooling to the glass transition temperature of the polymeric complex.  相似文献   
107.
108.
N‐(4‐nitrophenyl)‐4′,4″‐bisformyl‐diphenylamine was synthesized from N‐(4‐nitrophenyl)‐diphenylamine by the Vilsmeier‐Haack reaction. Soluble aromatic poly(azomethine)s (PAMs) were prepared by the solution polycondensation of N‐(4‐nitrophenyl)‐4′,4″‐bisformyl‐diphenylamine and aromatic diamine in N‐methyl‐2‐pyrrolidone (NMP) at room temperature under reduced pressure. All the PAMs are highly soluble in various organic solvents, such as N,N‐dimethylacetamide (DMAc), chloroform (CHCl3), and tetrahydrofuran (THF). Differential scanning calorimetry (DSC) indicated that these PAMs had glass‐transition temperatures (Tgs) in the range of 170–230 °C, and a 10% weight‐loss temperatures in excess of 490 °C with char yield at 800 °C in nitrogen higher than 60%. These PAMs in NMP solution showed UV‐Vis charge‐transfer (CT) absorption at 405–421 nm and photoluminescence peaks around 462–466 nm with fluorescence quantum efficiency (ΦF) 0.10–0.99%. The highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy levels of these PAMs can be determined from cyclic voltammograms as 4.86–5.43 and 3.31–3.34 eV, respectively. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4921–4932, 2007  相似文献   
109.
110.
A large quantity of small molecules may migrate into a network of long polymers, causing the network to swell, forming an aggregate known as a polymeric gel. This paper formulates a theory of the coupled mass transport and large deformation. The free energy of the gel results from two molecular processes: stretching the network and mixing the network with the small molecules. Both the small molecules and the long polymers are taken to be incompressible, a constraint that we enforce by using a Lagrange multiplier, which coincides with the osmosis pressure or the swelling stress. The gel can undergo large deformation of two modes. The first mode results from the fast process of local rearrangement of molecules, allowing the gel to change shape but not volume. The second mode results from the slow process of long-range migration of the small molecules, allowing the gel to change both shape and volume. We assume that the local rearrangement is instantaneous, and model the long-range migration by assuming that the small molecules diffuse inside the gel. The theory is illustrated with a layer of a gel constrained in its plane and subject to a weight in the normal direction. We also predict the scaling behavior of a gel under a conical indenter.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号