首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   42篇
  免费   0篇
化学   25篇
晶体学   3篇
力学   2篇
数学   5篇
物理学   7篇
  2019年   4篇
  2018年   1篇
  2014年   1篇
  2013年   2篇
  2011年   1篇
  2009年   2篇
  2008年   1篇
  2007年   4篇
  2006年   2篇
  2005年   1篇
  2004年   3篇
  2003年   2篇
  2002年   1篇
  2000年   1篇
  1998年   1篇
  1995年   4篇
  1993年   1篇
  1992年   4篇
  1985年   1篇
  1980年   1篇
  1978年   2篇
  1934年   1篇
  1921年   1篇
排序方式: 共有42条查询结果,搜索用时 203 毫秒
11.
One of the tasks of food law enforcement authorities is to supervise the composition of cosmetics. In the case of mouthwashes, they are likely to contain (labeled or unlabeled) antimicrobial compounds. Conventional analyses, such as high-performance liquid chromatography (HPLC) and gas chromatography (GC) only shed light on a compound’s structure, but not on its biological function. In this study, we demonstrate that the task of detecting antimicrobials in mouthwashes can be streamlined using the luminescent bacterium Vibrio fischeri as a biodetector coupled with high-performance thin-layer chromatography (HPTLC) as a pre-separation method. The employment of subsequent conventional techniques could then be restricted to fractions with proven V. fischeri toxicity. Samples were separated in parallel on silica gel and amino layer HPTLC plates, developed with a solvent system containing tertiary butyl methyl ether and n-hexane and dried on a plate heater. After applying V. fischeri onto the HPTLC plate, zones of interest were extracted from a parallel plate and identified by HPLC–UV or GC-mass spectrometry. The reaction of V. fischeri to more than 40 standard substances which might be present in mouthwashes was determined. Based on this information, six commercially available mouthwashes were analyzed. The workflow proved to be viable for an effect-directed screening for antimicrobial compounds. The analysis of mouthwashes revealed that not only declared preservatives are used (sodium benzoate, cetylpyridinium chloride) but also other compounds, especially constituents of essential oils. Because their main purpose is flavoring of the mouthwash, they are summarized as “aroma” (anethole, carvone, menthol, thymol) which is in compliance with legal restrictions.  相似文献   
12.
Hohl A  Gavrielides A 《Optics letters》1998,23(20):1606-1608
We have experimentally controlled the chaotic output of a single-mode semiconductor laser pumped near threshold and subject to optical feedback. We used a novel technique called dynamic targeting, which was theoretically proposed by Wieland et al. [Opt. Lett. 22, 469 (1997)]. Optical feedback causes the semiconductor laser to undergo a bifurcation cascade that exhibits regions of stability, periodicity, chaos, and coherence collapse. By adjusting the feedback phase simultaneously as the feedback strength was varied we steered the laser into the stable maximum gain mode, and thus we stabilized the system at maximum intensity.  相似文献   
13.
Reaction of [cis-Ru(2,2'-bpy)2(O3SCF3)2] (1) with 9-methylguanine (9-MeG) affords the cis-[Ru(2,2'-bpy)2(9-MeG)2]2+ complex (2) in good yield. Two bases bind to the metal center via the N7 atoms. X-ray structure analysis of 2(SO3CF3)2 (monoclinic, P2(1)/n, a = 12.5159(6) A, b = 20.0904(13) A, c = 17.1202(9) A, beta = 98.981(6) degrees, V = 4252.1(4) A(3), Z = 4) reveals that the two bases are in a head-to-tail (HT) orientation with base-base dihedral angle of 60.4 degrees. NMR studies confirm that the complex is stable in water for hours, and no evidence for guanine substitution by solvent molecules was found.  相似文献   
14.
    
Ohne Zusammenfassung  相似文献   
15.
16.
A new, extremely simple concept for the use of energy transfer as a means to the enhancement of light absorption and current generation in the dye solar cell (DSC) is presented. This model study is based upon a carboxy‐functionalized 4‐aminonaphthalimide dye (carboxy‐fluorol) as donor, and (NBu4)2[Ru(dcbpy)2(NCS)2] (N719) as acceptor chromophores. A set of three different devices is assembled containing either exclusively carboxy‐fluorol or N719, or a mixture of both. This set of transparent devices is characterized via IV‐measurements under AM1.5G and monochromatic illumination and their light‐harvesting and external quantum efficiencies (LHE and EQE, respectively) are determined as well. It is shown that the device containing only the donor chromophore has a marginal power conversion efficiency, thus indicating that carboxy‐fluorol is a poor sensitizer for the DSC. Cyclovoltametric measurements show that the poor sensitization ability arises from the kinetic inhibition of electron injection into the TiO2 conduction band. Comparing the spectral properties of the DSCs assembled presently, however, demonstrates that light absorbed by carboxy‐fluorol is almost quantitatively contributing to the photocurrent if N719 is present as an additional sensitizer. In this case, N719 acts as a catalyst for the sensitization of TiO2 by carboxy‐fluorol in addition to being a photosensitizer. Evaluation of the maximum output power under blue illumination shows that the introduction of an energy‐donor moiety via coadsorption, leads to a significant increase in the monochromatic maximum output power. This result demonstrates that energy transfer between coadsorbed chromophores could be useful for the generation of current in dye‐sensitized solar cells.  相似文献   
17.
Simultaneous NOx reduction and soot combustion over a commercial vanadia-based selective catalytic reduction (SCR) catalyst were investigated. Carbon black was used as model soot. The impact of the contact intensity between carbon and catalyst was studied. The experiments appeared as promising results for the utilization of vanadia-based SCR catalysts in SCR on filter system as, in the SCR operating temperature range (250–400 °C), no significant impact of the presence of carbon black on NOx reduction was observed. However, a decrease in the specific carbon oxidation rate was highlighted. This latter increases with the contact between carbon and catalyst and is attributed to a lack of NO2, consumed by the fast SCR reaction. At temperatures greater than 400 °C, the contact between carbon particles and the SCR catalyst partially inhibits the NOx reduction, whereas it exhibits a catalytic effect on the carbon oxidation rate. The tighter the contact between the two materials, the more significant is this behavior. A redox mechanism, which competes with the redox cycle of the SCR mechanism, was proposed. The impregnation of a V-based SCR catalyst with 2 wt % of calcium was also performed. A drastic loss of DeNOx activity was observed, whereas the effect of the contact between carbon and catalyst was reduced.  相似文献   
18.
19.
New fluorescent analogues of farnesol and geranylgeraniol have been prepared and then converted to the corresponding pyrophosphates. These analogues incorporate anthranylate or dansyl-like groups anchored to the terpenoid skeleton through amine bonds that would be expected to be relatively stable to metabolism. After addition of the alcohols or the pyrophosphates to the culture medium, their fluorescence is readily observed inside a human-derived leukemia cell line. Enzyme assays have revealed that the farnesyl pyrophosphate analogue is an inhibitor of FTase, while the corresponding alcohol is not. These results, together with Western blot analyses of cell lysates, indicate that the farnesyl pyrophosphate analogue penetrates the cells as an intact pyrophosphate and that it does so at a biologically relevant concentration.  相似文献   
20.
The temperature-induced phase separation of native amorphous germanium monoxide, a-GeO, into Ge and GeO2 was studied by measurements of the Ge K-edge employing partial fluorescence yield detection. In the native a-GeO samples a significant amount of sub-oxides was found. This sub-oxide content decreases with increasing annealing temperature. At elevated temperatures the formation of nanocrystals was observed. The results indicate a structure of a-GeO which consists of nanoscaled Ge and GeO2 clusters separated by sub-oxide interfaces.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号