首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   401篇
  免费   7篇
化学   288篇
晶体学   4篇
力学   1篇
数学   22篇
物理学   93篇
  2020年   4篇
  2018年   3篇
  2016年   3篇
  2015年   3篇
  2014年   3篇
  2013年   22篇
  2012年   13篇
  2011年   23篇
  2010年   3篇
  2009年   6篇
  2008年   17篇
  2007年   27篇
  2006年   23篇
  2005年   28篇
  2004年   24篇
  2003年   27篇
  2002年   30篇
  2001年   13篇
  2000年   8篇
  1998年   4篇
  1997年   5篇
  1996年   5篇
  1995年   3篇
  1994年   2篇
  1993年   4篇
  1992年   6篇
  1991年   5篇
  1990年   6篇
  1989年   5篇
  1988年   3篇
  1987年   4篇
  1986年   4篇
  1985年   2篇
  1984年   5篇
  1983年   3篇
  1982年   2篇
  1981年   6篇
  1980年   3篇
  1979年   3篇
  1978年   5篇
  1977年   3篇
  1976年   7篇
  1975年   4篇
  1974年   5篇
  1973年   3篇
  1972年   4篇
  1938年   2篇
  1912年   2篇
  1911年   2篇
  1909年   2篇
排序方式: 共有408条查询结果,搜索用时 46 毫秒
81.
82.
Recent papers have discussed the optimal reverberation times in classrooms for speech intelligibility, based on the assumption of a diffuse sound field. Here this question was investigated for more ‘typical’ classrooms with non-diffuse sound fields. A ray-tracing model was modified to predict speech-intelligibility metric U50. It was used to predict U50 in various classroom configurations for various values of the room absorption, allowing the optimal absorption (that predicting the highest U50)—and the corresponding optimal reverberation time—to be identified in each case. The range of absorptions and reverberation times corresponding to high speech intelligibility were also predicted in each case. Optimal reverberation times were also predicted from the optimal surface-absorption coefficients using Sabine and Eyring versions of diffuse-field theory, and using the diffuse-field expression of Hodgson and Nosal. In order to validate the ray-tracing model, predictions were made for three classrooms with highly diffuse sound fields; these were compared to values obtained by the diffuse-field models, with good agreement. The methods were then applied to three ‘typical’ classrooms with non-diffuse fields. Optimal reverberation times increased with room volume and noise level to over 1 s. The accuracy of the Hodgson and Nosal expression varied with classroom size and noise level. The optimal average surface-absorption coefficients varied from 0.19 to 0.83 in the different classroom configurations tested. High speech intelligibility was, in general, predicted for a wide range of coefficients, but could not be obtained in a large, noisy classroom.  相似文献   
83.
Low-temperature oxygenation of copper(I) complexes of N,N,N',N'-tetraethylpropane-1,3-diamine yields solutions containing both mu-eta2:eta2-peroxodicopper(II) (P) and bis(mu-oxo)dicopper(III) (O) valence isomers. The P/O equilibrium position depends on the nature of the counteranion; P is favored with more basic anions. Titration and EXAFS experiments as well as DFT calculations suggest that axial donation from a sulfonate anion to the copper centers imparts an electronic/electrostatic bias toward the P isomer.  相似文献   
84.
Iron L-edge, iron K-edge, and sulfur K-edge X-ray absorption spectroscopy was performed on a series of compounds [Fe(III)H(3)buea(X)](n-) (X = S(2-), O(2-), OH(-)). The experimentally determined electronic structures were used to correlate to density functional theory calculations. Calculations supported by the data were then used to compare the metal-ligand bonding and to evaluate the effects of H-bonding in Fe(III)(-)O vs Fe(III)(-)S complexes. It was found that the Fe(III)(-)O bond, while less covalent, is stronger than the Fe(III)(-)S bond. This dominantly reflects the larger ionic contribution to the Fe(III)(-)O bond. The H-bonding energy (for three H-bonds) was estimated to be -25 kcal/mol for the oxo as compared to -12 kcal/mol for the sulfide ligand. This difference is attributed to the larger charge density on the oxo ligand resulting from the lower covalency of the Fe-O bond. These results were extended to consider an Fe(IV)(-)O complex with the same ligand environment. It was found that hydrogen bonding to Fe(IV)(-)O is less energetically favorable than that to Fe(III)(-)O, which reflects the highly covalent nature of the Fe(IV)(-)O bond.  相似文献   
85.
The activation of dioxygen (O(2)) by Cu(I) complexes is an important process in biological systems and industrial applications. In tyrosinase, a binuclear copper enzyme, a mu-eta(2):eta(2)-peroxodicopper(II) species is accepted generally to be the active oxidant. Reported here is the characterization and reactivity of a mu-eta(2):eta(2)-peroxodicopper(II) complex synthesized by reacting the Cu(I) complex of the secondary diamine ligand N,N'-di-tert-butyl-ethylenediamine (DBED), [(DBED)Cu(MeCN)](X) (1.X, X = CF(3)SO(3)(-), CH(3)SO(3)(-), SbF(6)(-), BF(4)(-)), with O(2) at 193 K to give [[Cu(DBED)](2)(O(2))](X)(2) (2.X(2)). The UV-vis and resonance Raman spectroscopic features of 2 vary with the counteranion employed yet are invariant with change of solvent. These results implicate an intimate interaction of the counteranions with the Cu(2)O(2) core. Such interactions are supported further by extended X-ray absorption fine structure (EXAFS) analyses of solutions that reveal weak copper-counteranion interactions. The accessibility of the Cu(2)O(2) core to exogenous ligands such as these counteranions is manifest further in the reactivity of 2 with externally added substrates. Most notable is the hydroxylation reactivity with phenolates to give catechol and quinone products. Thus the strategy of using simple bidentate ligands at low temperatures provides not only spectroscopic models of tyrosinase but also functional models.  相似文献   
86.
The crystallography of interfaces in a duplex stainless steel having an equiaxed microstructure produced through the ferrite to austenite diffusive phase transformation has been studied. The five-parameter interface character distribution revealed a high anisotropy in habit planes for the austenite–ferrite and austenite–austenite interfaces for different lattice misorientations. The austenite and ferrite habit planes largely terminated on (1 1 1) and (1 1 0) planes, respectively, for the austenite–ferrite interfaces associated with Kurdjumov–Sachs (K–S) and Nishiyama–Wasserman (N–W) orientation relationships. This was mostly attributed to the crystallographic preference associated with the phase transformation. For the austenite–ferrite interfaces with orientation relationships which are neither K–S nor N–W, both austenite and ferrite habit planes had (1 1 1) orientations. Σ3 twin boundaries comprised the majority of austenite–austenite interfaces, mostly showing a pure twist character and terminating on (1 1 1) planes due to the minimum energy configuration. The second highest populated austenite–austenite boundary was Σ9, which tended to have grain boundary planes in the tilt zone due to the geometrical constraints. Furthermore, the intervariant crystallographic plane distribution associated with the K–S orientation relationship displayed a general tendency for the austenite habit planes to terminate with the (1 1 1) orientation, mainly due to the crystallographic preference associated with the phase transformation.  相似文献   
87.
88.
The rate constants for exchange of hydrogen for deuterium at the α-CH(2) positions of 8-(N,N-dimethylaminonaphthalen-1-yl)acetic acid tert-butyl ester 1 and naphthalen-1-ylacetic acid tert-butyl ester 2 have been determined in potassium deuteroxide solutions in 1 : 1 D(2)O : CD(3)CN, in order to quantify the effect of the neighbouring peri-dimethylamino substituent on α-deprotonation. Intramolecular general base catalysis by the (weakly basic) neighbouring group was not detected. Second-order rate constants, k(DO), for the deuterium exchange reactions of esters 1 and 2 have been determined as 1.35 × 10(-4) M(-1) s(-1) and 3.95 × 10(-3) M(-1) s(-1), respectively. The unexpected 29-fold decrease in the k(DO) value upon the introduction of a peri-dimethylamino group is attributed to an unfavourable steric and/or electronic substituent effect on intermolecular deprotonation by deuteroxide ion. From the experimental k(DO) values, carbon acid pK(a) values of 26.8 and 23.1 have been calculated for esters 1 and 2.  相似文献   
89.
The characterisation of strain path with respect to the directionality of defect formation is discussed. The criterion of non-monotonic strain path is used in the scalar and tensor models for damage accumulation and recovery. Comparable analysis of models and their verification has been obtained by simulation of crack initiation in a two-stage metal forming operation consisting of wire drawing followed by constrained upsetting.  相似文献   
90.
X-ray absorption spectroscopy (XAS) at the sulfur ( approximately 2470 eV) and chlorine ( approximately 2822 eV) K-edges has been applied to a series of 4Fe-4S model complexes. These are compared to 2Fe-2S model complexes to obtain insight into the localized ground state in the mixed-valence dimer versus the delocalized ground state in the mixed-valence tetramer. The preedges of hypothetical delocalized mixed-valence dimers [Fe(2)S(2)](+) are estimated using trends from experimental data and density functional calculations, for comparison to the delocalized mixed-valence tetramer [Fe(4)S(4)](2+). The differences between these two mixed-valence sites are due to the change of the sulfide-bridging mode from micro(2) to micro(3). The terminal chloride and thiolate ligands are used as spectator ligands for the electron density of the iron center. From the intensity of the preedge, the covalency of the terminal ligands is found to increase in the tetramer as compared to the dimer. This is associated with a higher effective nuclear charge on the iron in the tetramer (derived from the energies of the preedge). The micro(3)-bridging sulfide in the tetramer has a reduced covalency per bond (39%) as compared to the micro(2)-bridging sulfide in the dimer (51%). A simple perturbation model is used to derive a quadratic dependence of the superexchange coupling constant J on the covalency of the metal ions with the bridging ligands. This relationship is used to estimate the superexchange contribution in the tetramer (J = -156 cm(-)(1)) as compared to the mixed-valence dimer (J = -360 cm(-)(1)). These results, combined with estimates for the double exchange and the vibronic coupling contributions of the dimer sub-site of the tetramer, lead to a delocalized S(t) = (9)/(2) spin ground state for the mixed-valence dimer in the tetramer. Thus, the decrease in the covalency, hence the superexchange pathway associated with changing the bridging mode of the sulfides from micro(2) to micro(3) on going from the dimer to the tetramer, significantly contributes to the delocalization of the excess electron over the dimer sub-site in the tetramer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号