首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4555篇
  免费   603篇
  国内免费   568篇
化学   3419篇
晶体学   60篇
力学   198篇
综合类   49篇
数学   671篇
物理学   1329篇
  2024年   6篇
  2023年   44篇
  2022年   96篇
  2021年   121篇
  2020年   140篇
  2019年   169篇
  2018年   159篇
  2017年   117篇
  2016年   225篇
  2015年   216篇
  2014年   259篇
  2013年   300篇
  2012年   330篇
  2011年   369篇
  2010年   262篇
  2009年   266篇
  2008年   348篇
  2007年   301篇
  2006年   263篇
  2005年   226篇
  2004年   208篇
  2003年   224篇
  2002年   250篇
  2001年   202篇
  2000年   119篇
  1999年   95篇
  1998年   57篇
  1997年   36篇
  1996年   30篇
  1995年   26篇
  1994年   32篇
  1993年   26篇
  1992年   14篇
  1991年   15篇
  1990年   12篇
  1989年   9篇
  1988年   14篇
  1987年   13篇
  1986年   13篇
  1985年   18篇
  1984年   8篇
  1983年   6篇
  1982年   14篇
  1981年   11篇
  1980年   12篇
  1979年   5篇
  1976年   5篇
  1975年   5篇
  1974年   5篇
  1973年   5篇
排序方式: 共有5726条查询结果,搜索用时 15 毫秒
151.
Ag/carbon hybrids were fabricated by the redox of glucose and silver nitrate (AgNO3) in the presence of imidazolium ionic liquid ([C14mim]BF4) under hydrothermal condition. Monodisperse carbon hollow sub-microspheres encapsulating Ag nanoparticles and Ag/carbon cables were selectively prepared by varying the concentration of ionic liquid. Other reaction parameters, such as reaction temperature, reaction time and the mole ratio of silver nitrate to glucose, play important roles in controlling the structures of the products. The products were characterized by XRD, TEM (HRTEM), SEM, energy-dispersive X-ray spectroscopy (EDX), FTIR spectroscopy and a Raman spectrometer. The possible formation mechanism was proposed. The catalytic property of the hybrid in the oxidation of 1-butanol by H2O2 was also investigated.  相似文献   
152.
Targeted synthesis of kagome ( kgm ) topologic 2D covalent organic frameworks remains challenging, presumably due to the severe dependence on building units and synthetic conditions. Herein, two isomeric “two-in-one” monomers with different lengths of substituted arms based on naphthalene core (p-Naph and m-Naph) are elaborately designed and utilized for the defined synthesis of isomeric kgm Naph-COFs. The two isomeric frameworks exhibit splendid crystallinity and showcase the same chemical composition and topologic structure with, however, different pore channels. Interestingly, C60 is able to uniformly be encapsulated into the triangle channels of m-Naph-COF via in situ incorporation method, while not the isomeric p-Naph-COF, likely due to the different pore structures of the two isomeric COFs. The resulting stable C60@m-Naph-COF composite exhibits much higher photoconductivity than the m-Naph-COF owing to charge transfer between the conjugated skeletons and C60 guests.  相似文献   
153.
A SiC nanomesh is used as a nanotemplate to direct the epitaxy of C60 molecules. The epitaxial growth of C60 molecules on SiC nanomesh at room temperature is investigated by in situ scanning tunneling microscopy, revealing a typical Stranski-Krastanov mode (i.e., for the first one or two monolayers, it is a layer-by-layer growth or 2-D nucleation mode; at higher thicknesses, it changes to island growth or a 3-D nucleation mode). At submonolayer (0.04 and 0.2 ML) coverage, C60 molecules tend to aggregate to form single-layer C60 islands that mainly decorate terrace edges, leaving the uncovered SiC nanomesh almost free of C60 molecules. At 1 ML C60 coverage, a complete wetting layer of hexagonally close-packed C60 molecules forms on top of the SiC nanomesh. At higher coverage from 4.5 ML onward, the C60 stacking adopts a (111) oriented face-centered-cubic (fcc) structure. Strong bright and dim molecular contrasts have been observed on the first layer of C60 molecules, which are proposed to originate from electronic effects in a single-layer C60 island or the different coupling of C60 molecules to SiC nanomesh. These STM molecular contrast patterns completely disappear on the second and all the subsequent C60 layers. It is also found that the nanomesh can be fully recovered by annealing the C60/SiC nanomesh sample at 200 degrees C for 20 min.  相似文献   
154.
In the title compound, 3‐[(4‐amino‐2‐methyl‐5‐pyrimidin‐1‐io)methyl]‐5‐(2‐hydroxy­ethyl)‐4‐methyl­thia­zolium(2+) bis(tetra­fluoro­borate), C12H18N4OS2+·2BF4?, the divalent thia­mine cation (in the F conformation) is associated with BF4? anions via two characteristic bridging interactions between the thia­zolium and pyrimidinium rings, i.e. C—H?BF4??pyrimidinium and N—H?BF4??thia­zolium interactions. Thi­amine mol­ecules are linked by N—H?O hydrogen bonds to form a helical chain structure.  相似文献   
155.
Adsorption and coadsorption studies on free silver clusters show that nitrogen physisorbs like rare gases, whereas oxygen chemisorbs with similarities and differences to bulk silver surfaces. Silver nanoparticles activate, or even dissociate adsorbed oxygen molecules. The global electron configurations of the adsorbent and adsorbate dominate the stability at small clusters. This is more important than geometry and site effects. Due to electronic shell effects and electron pairing, the activation of oxygen strongly varies with size. At more than 40 free electrons in the complex, such quantum effects start to blur. The size dependence becomes smoother and general trends govern the reactivity, which is driven by the interaction between the charge state of the nanoparticle and the charge transfer of the reaction.  相似文献   
156.
157.
E, E‐1, 4‐bis[4′‐(N,N‐dibutylamino)styryl]‐2,5‐dimethoxy‐benzene (DBASDMB) organic crystals with high crystalline quality, large size and excellent optical properties are prepared. The linear and nonlinear properties in the crystal are comparatively studied. The relaxation dynamics pumped by two‐photon are very similar with that pumped by one‐photon. The crystal exhibits very strong two‐photon excited fluorescence and amplified spontaneous emission. Efficient two‐photon absorption, reasonably high fluorescent quantum efficiency, and high crystal quality together with stimulated emission make organic crystals ideal for the application in frequency upconversion and other optoelectronic fields.  相似文献   
158.
Template-free cross-linking of single-stranded DNA bearing octadiynyl side chains at the 7-position of 8-aza-7-deazapurine moieties with bisfunctional azides is reported employing a Cu(I)-catalyzed azide-alkyne "bis-click" reaction. Bis-adducts were formed when the bis-azide:oligonucleotide ratio was 1:1; monofunctionalization occurred when the ratio was 15:1. Four-stranded DNA consisting of two cross-linked duplexes was obtained after hydridization. Cross-linked duplexes are as stable as individual duplexes when ligation was introduced at terminal positions; ligation at a central position led to a slight duplex destabilization.  相似文献   
159.
The contribution of UV light from plasma and an external UV lamp to the decomposition of toluene in a dielectric barrier discharge (DBD) plasma/UV system, as well as in a plasma/photocatalysis system was investigated. It was found that UV light from the DBD reactor was very weak. Its contribution to the removal of toluene in the plasma/photocatalysis system could be ignored. Whereas, the introduction of external UV light to the plasma significantly improves the removal efficiency of toluene by 20%. The removal efficiency of toluene in the plasma/photocatalysis system increased about 22% and 16% when compared with a plasma only system and plasma driven photocatalyst system, respectively. The increased toluene removal efficiency was mostly attributed to the contribution of the synergy between plasma and UV light, but not to the synergy between plasma and photocatalysis. The synergetic effect between plasma and photocatalysis was not significant.  相似文献   
160.
<正>Two pyrazine-contairting macrocyclic polyazomethines 2 and 3 were synthesized by direct[2 + 2]and[3 + 3]condensation reactions between 2,2'-[pyrazine-2,3-diylbis(oxy)]dibenzaldehyde(1) and hydrazine.Both 2 and 3 were characterized by NMR, HRMS,and their structures were determined via X-ray crystal diffraction studies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号