首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5029篇
  免费   298篇
  国内免费   48篇
化学   3729篇
晶体学   45篇
力学   112篇
综合类   1篇
数学   454篇
物理学   1034篇
  2023年   22篇
  2022年   39篇
  2021年   91篇
  2020年   81篇
  2019年   107篇
  2018年   81篇
  2017年   67篇
  2016年   171篇
  2015年   153篇
  2014年   188篇
  2013年   306篇
  2012年   341篇
  2011年   386篇
  2010年   256篇
  2009年   225篇
  2008年   316篇
  2007年   270篇
  2006年   272篇
  2005年   276篇
  2004年   218篇
  2003年   207篇
  2002年   184篇
  2001年   117篇
  2000年   107篇
  1999年   55篇
  1998年   43篇
  1997年   53篇
  1996年   66篇
  1995年   45篇
  1994年   42篇
  1993年   59篇
  1992年   46篇
  1991年   40篇
  1990年   40篇
  1989年   48篇
  1988年   28篇
  1987年   26篇
  1986年   30篇
  1985年   29篇
  1984年   20篇
  1983年   16篇
  1982年   17篇
  1981年   26篇
  1980年   15篇
  1979年   18篇
  1977年   19篇
  1976年   19篇
  1975年   11篇
  1974年   19篇
  1973年   11篇
排序方式: 共有5375条查询结果,搜索用时 15 毫秒
981.
In linear viscoelastic region, it is well known that dynamic modulus and dynamic compliance can be converted to each other. However, it is questionable whether there exists an interconversion between large amplitude oscillatory shear (LAOS) data measured from different types of rheometers—stress-controlled and strain-controlled rheometers. Hence, we tried to prove the existence by use of polyethylene oxide (PEO) aqueous solutions with well-developed entanglements. From this experiment, we can conclude that a stress-controlled rheometer can simulate LAOS behavior measured from a strain-controlled rheometer under the conditions where inertia effect is not significant. Furthermore, it is investigated whether the LAOS data of the stress-controlled rheometer obey stress–frequency superposition as the strain–frequency superposition found by Cho et al. (J Rheol 54:27–63, 2010) from LAOS data measured by the strain-controlled rheometer. This scaling relation shows that the dimensionless stress amplitude is a function of zeta which is the product of the stress amplitude and linear viscoelastic function J′(ω). The plot shows that all of the data are superposed in a single curve without regard to frequency, molecular weight, and concentration of PEO aqueous solutions.  相似文献   
982.
Due to the concern on global warming, the demand for a system using natural refrigerant is increasing and many researches have been devoted to develop systems with natural refrigerants. Among natural refrigerant systems, an air cycle system has emerged as one of alternatives of Freon gas system due to environmentally friendly feature in spite of the inherent low efficiency. To overcome the technical barrier, this study proposed combination of multiple systems as a hybrid cycle to achieve higher efficiency of an air cycle system. The hybrid air cycle adopts a humidity control units such as an adsorber and a desorber to obtain the cooling effect from latent heat as well as sensible heat. To investigate the efficacy of the hybrid air cycle, the cooling performance of a hybrid air cycle is investigated analytically and experimentally. From the simulation result, it is found that COP of the hybrid air cycle is two times higher than that of the conventional air cycle. The experiments are conducted on the performance of the desiccant system according to the rotation speed in the system and displayed the feasibility of the key element in the hybrid air cycle system. From the results, it is shown that the system efficiency can be enhanced by utilization of the exhausted heat through the ambient heat exchanger with advantage of controlling the humidity by the desiccant rotor.  相似文献   
983.
A new multi-element analysis technique based on laser-excited atomic fluorescence was reviewed. However, the one-wavelength-one-transition constraint was overcome. Numerous elements were induced to fluoresce at a single excitation wavelength of 193 nm. This was possible provided that the analytes were imbedded in dense plumes, such as those produced by pulsed laser ablation. The underlying mechanism of the technique was explained and corroborated. Analytical applications to metals, plastics, ceramics and their composites were discribed. Detection limits in the ng/g range and mass limits of atto moles were demonstrated. Several real-world problems, including the analysis of paint coating for trace lead, the non-destructive analysis of potteries and ink, the chemical profiling of electrode-plastic interfaces, and the analysis of ingestible lead colloids were discussed.  相似文献   
984.
In this article, we review or report recent works on atomic wavelengths in screening environments. We mainly review recent works on the transition, tune-out and magic wavelengths with Coulomb and screened Coulomb potentials. We also present our investigation on tune-out and magic wavelengths for two-electron Yukawa atoms. The various transition wavelengths for two-electron systems with and without screening environments are also presented.  相似文献   
985.
A novel diced spherical quartz analyzer for use in resonant inelastic X‐ray scattering (RIXS) is introduced, achieving an unprecedented energy resolution of 10.53 meV at the Ir L3 absorption edge (11.215 keV). In this work the fabrication process and the characterization of the analyzer are presented, and an example of a RIXS spectrum of magnetic excitations in a Sr3Ir2O7 sample is shown.  相似文献   
986.
In this study, nanocomposites of poly(ethylene-co-vinyl acetate) with two kinds of organically modified montmorillonite (OMMT) were prepared by melt intercalation. Their structures and mechanical properties were characterized by X-ray diffraction (XRD) and tensile test respectively. Especially, foaming of these nanocomposites mixed with chemical blowing agent was carried out through compression molding. Influences of OMMT on foaming ratio and mechanical properties were investigated by density test, tensile test and tear test. Results revealed that both kinds of OMMT with proper content increased tensile strength and Young's modulus of nanocomposites without a compromise of elongation at break. For foaming, OMMTs apparently improved foaming ratio and in particular, one of them can improve tear strength, tensile strength, Young's modulus and elongation although the density was decreased.  相似文献   
987.
In this paper, the moment method in statistical mechanics has been employed to study the pressure effects on thermodynamic and mechanical properties of zinc-blende zinc telluride using many-body potential. We have derived the analytical expressions of the pressure-dependent lattice parameter, volume compression as well as mean-square displacement of zinc-blende type compound. Numerical calculations performed for ZnTe compound up to 12 GPa are found to be in good and reasonable agreement with available experimental data as well as with previous theoretical studies. These results have been used to evaluate the bulk modulus and its first pressure derivative of ZnTe. The present moment method has taken into account the quantum zero-point vibrations at low temperature and the higher-order anharmonic terms in the atomic displacements. This research shows the advantage of moment method on extensively studying thermo-mechanical properties of materials under high pressures.  相似文献   
988.
Spontaneously appearing macroscopic polarization (self‐polarization) in ferroelectrics without an electrode or an external electric field would enable the freedom to design many ferroelectric heterostructures and devices. The (K0.5Na0.5)(Mn0.005Nb0.995)O3 (KNMN) thin film was grown on Nb:SrTiO3 single‐crystal substrate and the resultant self‐polarization behavior due to strain relaxation was investigated. The lattice mismatch and difference in TEC between the KNMN thin film and the Nb:SrTiO3 substrate creates a compressive strain. The compressive strain gradient may be the main cause for the observed downward self‐polarization. The downward self‐polarization of the KNMN thin film can be explained by the strong inhomogeneous compressive strain caused by strain relaxation. (© 2016 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   
989.
Gasoline direct injection (GDI) increases engine power output and reduces emissions. In GDI engines, increasing injection pressure improves atomization, which increases thermal efficiency at the cost of wall wetting. When wall wetting occurs, both soot emissions and fuel consumption increase. Wall wetting in GDI engines under cold driving conditions has rarely been considered. In this study, experimental data characterizing droplet splashing/spreading phenomena were collected to inform numerical simulations of combustion characteristics and wall wetting subject to variable driving conditions and excess air ratio, λ. Fully 3D and unsteady numerical simulations were carried out to predict flow-field, combustion, and spray-impingement characteristics. To simulate a GDI engine, a spray-impingement model was developed using both experimental data and previous modeling efforts. The excess air ratio and driving-condition temperature were the variable parameters considered in this study. When decreasing λ from 1.0 to 0.7 by increasing the fuel-injection rate (fuel rich), the cylinder pressure increases to 61 % of the pressure when λ=1.0. Because of increasing the fuel-injection rate, the increased momentum in the fuel spray increases both wall wetting and soot generation. At low driving-condition temperatures, the cylinder pressure was up to 63 % less than that under warm conditions, but with increased soot generation. Simulations revealed a correlation between wall wetting and the soot emissions. Soot generation was most sensitive to changes in wall wetting.  相似文献   
990.
In this paper, we present two adaptive methods for the basis enrichment of the mixed Generalized Multiscale Finite Element Method (GMsFEM) for solving the flow problem in heterogeneous media. We develop an a-posteriori error indicator which depends on the norm of a local residual operator. Based on this indicator, we construct an offline adaptive method to increase the number of basis functions locally in coarse regions with large local residuals. We also develop an online adaptive method which iteratively enriches the function space by adding new functions computed based on the residual of the previous solution and special minimum energy snapshots. We show theoretically and numerically the convergence of the two methods. The online method is, in general, better than the offline method as the online method is able to capture distant effects (at a cost of online computations), and both methods have faster convergence than a uniform enrichment. Analysis shows that the online method should start with a certain number of initial basis functions in order to have the best performance. The numerical results confirm this and show further that with correct selection of initial basis functions, the convergence of the online method can be independent of the contrast of the medium. We consider cases with both very high and very low conducting inclusions and channels in our numerical experiments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号