首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   774篇
  免费   22篇
  国内免费   6篇
化学   576篇
晶体学   4篇
力学   3篇
数学   101篇
物理学   118篇
  2022年   6篇
  2021年   11篇
  2020年   16篇
  2019年   11篇
  2018年   6篇
  2017年   7篇
  2016年   22篇
  2015年   11篇
  2014年   16篇
  2013年   25篇
  2012年   36篇
  2011年   47篇
  2010年   22篇
  2009年   14篇
  2008年   39篇
  2007年   43篇
  2006年   38篇
  2005年   42篇
  2004年   37篇
  2003年   32篇
  2002年   33篇
  2001年   11篇
  2000年   17篇
  1998年   8篇
  1997年   8篇
  1996年   9篇
  1995年   6篇
  1994年   17篇
  1993年   9篇
  1992年   16篇
  1991年   6篇
  1990年   6篇
  1989年   10篇
  1988年   7篇
  1987年   5篇
  1985年   13篇
  1984年   12篇
  1982年   7篇
  1981年   9篇
  1979年   13篇
  1978年   10篇
  1977年   5篇
  1976年   6篇
  1975年   4篇
  1974年   5篇
  1973年   6篇
  1971年   4篇
  1969年   4篇
  1966年   4篇
  1938年   4篇
排序方式: 共有802条查询结果,搜索用时 31 毫秒
131.
One-nanometer-thick nickel hydroxide nanosheets were prepared by exfoliation of layered nickel hydroxides intercalated with dodecyl sulfate (DS) ions. The shape of the nanosheets was hexagonal, as was that of the layered nickel hydroxides intercalated with DS ions. The nickel hydroxide nanosheets exhibited charge-discharge properties in strong alkaline electrolyte. The morphology of the nanosheet changed during the electrochemical reaction.  相似文献   
132.
We describe a general multinuclear (1H, 23Na, 87Rb) NMR approach for direct detection of alkali metal ions bound to G-quadruplex DNA. This study is motivated by our recent discovery that alkali metal ions (Na+, K+, Rb+) tightly bound to G-quadruplex DNA are actually "NMR visible" in solution (Wong, A.; Ida, R.; Wu, G. Biochem. Biophys. Res. Commun. 2005, 337, 363). Here solution and solid-state NMR methods are developed for studying ion binding to the classic G-quadruplex structures formed by three DNA oligomers: d(TG4T), d(G4T3G4), and d(G4T4G4). The present study yields the following major findings. (1) Alkali metal ions tightly bound to G-quadruplex DNA can be directly observed by NMR in solution. (2) Competitive ion binding to the G-quadruplex channel site can be directly monitored by simultaneous NMR detection of the two competing ions. (3) Na+ ions are found to locate in the diagonal T4 loop region of the G-quadruplex formed by two strands of d(G4T4G4). This is the first time that direct NMR evidence has been found for alkali metal ion binding to the diagonal T4 loop in solution. We propose that the loop Na+ ion is located above the terminal G-quartet, coordinating to four guanine O6 atoms from the terminal G-quartet and one O2 atom from a loop thymine base and one water molecule. This Na+ ion coordination is supported by quantum chemical calculations on 23Na chemical shifts. Variable-temperature 23Na NMR results have revealed that the channel and loop Na+ ions in d(G4T4G4) exhibit very different ion mobilities. The loop Na+ ions have a residence lifetime of 220 micros at 15 degrees C, whereas the residence lifetime of Na+ ions residing inside the G-quadruplex channel is 2 orders of magnitude longer. (4) We have found direct 23Na NMR evidence that mixed K+ and Na+ ions occupy the d(G4T4G4) G-quadruplex channel when both Na+ and K+ ions are present in solution. (5) The high spectral resolution observed in this study is unprecedented in solution 23Na NMR studies of biological macromolecules. Our results strongly suggest that multinuclear NMR is a viable technique for studying ion binding to G-quadruplex DNA.  相似文献   
133.
In this work the mechanism of L-lactide polymerization promoted by NSSN zirconium complexes was investigated through DFT methods with the aim to understand as the electronic and steric features of the ligand affect the energy reaction. It was observed that the rate determining step of the process is the opening of the L-lactide ring and that by increasing the steric hindrance, evaluated by changing geometric parameters and topographic steric maps, or the electron-withdrawing properties of the ligand, the corresponding energy barrier increases. On the other hand, calculations foresee that a small and electron-releasing substituent on the nitrogen atom of the ligand, such as the methyl group, is desirable in order to obtain NSSN zirconium based catalysts with improved activity in the ROP of the L-lactide.  相似文献   
134.
A photocatalytic H2 production system using an inorganic–bio hybrid photocatalyst could contribute to the efficient utilization of solar energy, but would require the development of a new approach for preparing a H2‐forming biocatalyst. In the present study, we constructed a recombinant strain of Escherichia coli expressing the genes encoding the [FeFe]‐hydrogenase and relevant maturases from Clostridium acetobutylicum NBRC 13948 for use as a biocatalyst. We investigated the direct application of a whole‐cell of the recombinant E. coli. The combination of TiO2, methylviologen, and the recombinant E. coli formed H2 under light irradiation, demonstrating that whole cells of the recombinant E. coli could be employed for photocatalytic H2 production without any time‐consuming and costly manipulations (for example, enzyme purification). This is the first report of the direct application of a whole‐cell reaction of recombinant E. coli to photocatalytic H2 production.  相似文献   
135.
Among high-Tc superconductive copper oxides, there have been known phases that contain fluorite-structured layers as an additional "blocking block" between adjacent CuO2 planes. Here, we report that even a phase with the CuO2 planes separated by a 12-A thick quadruple-fluorite-layer block can be synthesized in a single phase and strongly oxygenated form to exhibit superconductivity with a Tc value as high as 55 K. The new phase is the fourth member of the (Cu,Mo)Sr2(Ce,Y)sCu2O(5+2s+delta) or (Cu,Mo)-12s2 homologous series. Comparison with the previously known s = 1, 2, and 3 members of the series reveals the amazing conclusion that Tc remains essentially unaffected upon inserting additional fluorite-structured layers between the two CuO2 planes as long as the hole-doping level of the planes is kept constant.  相似文献   
136.
We report direct (23)Na NMR observation for the presence of mixed cations (Na(+)/K(+), Na(+)/Rb(+), Na(+)/Sr(2+)) inside the G-quadruplex channel formed by the self-association of guanosine 5'-monophosphate at pH 8.  相似文献   
137.
A polymeric photosensitizer, poly(NIPAM-co-RB), consisting of N-isopropylacrylamide and rose bengal units, demonstrates a temperature-controlled changeable oxygenation selectivity by singlet oxygen in water.  相似文献   
138.
We newly prepared para- and meta-linked alkynylpyrene oligomers and examined their photophysical properties. Oligomerization of monomeric building blocks was performed by CuI-promoted oxidative coupling reaction. The resulting oligomers mainly consist of 2-mer to 6-mer that were assigned on the basis of MALDI-TOF mass spectra, and the 2-mer, 3-mer, and 4-mer were isolated and fully characterized. From their absorption and fluorescence spectra, the para-linked oligomers were found to be somewhat pi-conjugated compared with meta-linked ones, and the fluorescence quantum yields decreased with increasing oligomer length (Phif = 0.79-0.55).  相似文献   
139.
We investigated polymer-binding 7-mer peptides that recognize differences in the polymer stereoregularity of all-purpose poly(methyl methacrylate)s (PMMAs) with simple chemical structures. Quantitative surface plasmon resonance measurements detected association/dissociation processes of the peptides against PMMA film surfaces, followed by an estimation of kinetic parameters such as association/dissociation rate constants and affinity constants. Greater association and smaller dissociation constants of the peptides were observed against a target isotactic PMMA than the structurally similar reference syndiotactic PMMA, followed by greater affinity constants against the target. A c02 peptide composed of the Glu-Leu-Trp-Arg-Pro-Thr-Arg sequence showed the greatest affinity constant (2.8x10(5) M(-1)) for the target, which was 41-fold greater than that for the reference, thus demonstrating extremely high peptide specificities. The substitution of each amino acid of the c02 peptide to Ala (Ala scanning) clearly revealed the essential amino acids for the affinity constants; the essential order was Pro5>Thr6>Arg7>Glu1>Arg4. In fact, the shorter 4-mer peptide composed of the C-terminal Arg-Pro-Thr-Arg sequence of the c02 peptide still demonstrated strong target specificity, although the N-terminal 4-mer peptide Glu-Leu-Trp-Arg completely lost its specificity. The possible conformations modeled with Molecular Mechanics supported the significance of the Arg-Pro-Thr-Arg sequence. The thermodynamic parameters of the c02 peptide suggested an induced fit mechanism for the specific affinity. The present affinity analyses of polymer-recognizing peptides revealed significant and general information that was essential for potential applications in peptidyl nanomaterials.  相似文献   
140.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号