首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   543篇
  免费   35篇
  国内免费   1篇
化学   519篇
晶体学   3篇
力学   3篇
数学   1篇
物理学   53篇
  2022年   10篇
  2021年   4篇
  2020年   6篇
  2019年   15篇
  2018年   7篇
  2017年   4篇
  2016年   11篇
  2015年   18篇
  2014年   13篇
  2013年   25篇
  2012年   41篇
  2011年   37篇
  2010年   16篇
  2009年   18篇
  2008年   44篇
  2007年   40篇
  2006年   41篇
  2005年   37篇
  2004年   50篇
  2003年   23篇
  2002年   23篇
  2001年   4篇
  2000年   3篇
  1999年   6篇
  1998年   3篇
  1997年   11篇
  1996年   3篇
  1995年   4篇
  1994年   3篇
  1993年   7篇
  1992年   7篇
  1991年   5篇
  1990年   5篇
  1986年   2篇
  1985年   1篇
  1984年   4篇
  1983年   1篇
  1982年   1篇
  1981年   3篇
  1980年   4篇
  1979年   2篇
  1978年   2篇
  1977年   1篇
  1976年   2篇
  1974年   3篇
  1973年   1篇
  1972年   3篇
  1970年   1篇
  1967年   1篇
  1964年   1篇
排序方式: 共有579条查询结果,搜索用时 15 毫秒
131.
An analytical energy gradient formula for the density-matrix-based linear-scaling divide-and-conquer (DC) self-consistent field (SCF) method was proposed in a previous paper by Yang and Lee (YL) [J. Chem. Phys. 103, 5674 (1995)]. Since the formula by YL does not correspond to the exact gradient of the DC-SCF energy, we derive the exact formula by direct differentiation, which requires solving the coupled-perturbed equations while including the inter-subsystem coupling terms. Next, we present an alternative formula for approximately evaluating the DC-SCF energy gradient, assuming the variational condition for the subsystem density matrices. Numerical assessments confirmed that the DC-SCF energy gradient values obtained by the present formula are in reasonable agreement with the conventional SCF values when adopting a reliable buffer region. Furthermore, the performance of the present method was found to be better than that of the YL method.  相似文献   
132.
Fluorine-modified TiO2 nan oparticles were synthesized by introducing TiF4 as a fluorine source either before or after the sufficient hydrolysis and condensation of Ti(OEt)4. The photocatalytic activity of the fluorine-modified catalysts was found to be greatly affected by the fluorine position in TiO2 nanoparticles. When TiF4 and Ti(OEt)4 hydrolyzed with synchronization, the fluorine tended to be doped in the lattice. The formation of Ti3+ defects could result in charge recombination in bulk and bring down the photocatalytic activity. In contrast, if TiF4 was introduced after the sufficient hydrolysis and condensation of Ti(OEt)4. Ti−F bonds could exist mainly on the TiO2 particles surface, which not only prevented the growth of anatase crystals but also facilitated the transfer of organic compounds from solution to catalyst surface by reducing the hydrophilic properties.  相似文献   
133.
Nanoporous silica solids can offer opportunities for hosting photocatalytic components such as various tetra‐coordinated transition metal ions to form systems referred to as “single‐site photocatalysts”. Under UV/visible‐light irradiation, they form charge transfer excited states, which exhibit a localized charge separation and thus behave differently from those of bulk semiconductor photocatalysts exemplified by TiO2. This account presents an overview of the design of advanced functional materials based on the unique photo‐excited mechanisms of single‐site photocatalysts. Firstly, the incorporation of single‐site photocatalysts within transparent porous silica films will be introduced, which exhibit not only unique photocatalytic properties, but also high surface hydrophilicity with self‐cleaning and antifogging applications. Secondary, photo‐assisted deposition (PAD) of metal precursors on single‐site photocatalysts opens up a new route to prepare nanoparticles. Thirdly, visible light sensitive photocatalysts with single and/or binary oxides moieties can be prepared so as to use solar light, the ideal energy source.  相似文献   
134.
Polyhydroxylated fullerenes (fullerenols: C(60)(OH)(n)) are known as the major water-soluble fullerene derivatives which possess particular significance as free radical scavengers or antioxidants in biological systems. Recently, the novel polyhydroxylated fullerene (C(60) (OH)(44)·8H(2)O: SHH-F) was successfully synthesized. In the present study, we investigated the radical-scavenging effects and cytoprotective effects of three types of fullerenols (C(60)(OH)(6-12): LH-F, C(60) (OH)(32-34)·7H(2)O: HH-F, and C(60) (OH)(44)·8H(2)O: SHH-F) on UV-irradiation-induced cell injuries. HH-F and SHH-F exerted hydroxyl-radical scavenging activities as shown by DMPO-spin trap/ESR method, more markedly than LH-F. UVA or UVB irradiation-induced injuries in human skin keratinocytes HaCaT were significantly suppressed by HH-F and SHH-F, but scarcely by LF-H. The cytoprotective effects of SHH-F had a tendency to be superior to that of HH-F. And the cytoprotective effects of SHH-F against UVB-induced injuries were more effective than those of UVA. Irradiation with UVB to HaCaT cells was shown to cause rapid increases in cell-injury-associated symptoms such as intracellular oxidative stress levels, the formation of cyclobutane pyrimidine dimers and chromatin condensation, all of which were repressed by SHH-F. Thus, UVB-induced diverse harmful effects could be prevented by SHH-F, which was suggested to exert the cytoprotective effects through intracellular reactive oxygen species-scavenging in the keratinocytes.  相似文献   
135.
The efficient nucleophilic addition of aryl Grignard reagents (aryl=4‐MeOC6H4, 4‐Me2NC6H4, Ph, 4‐CF3C6H4, and thienyl) to C60 in the presence of DMSO produced 1,2‐arylhydro[60]fullerenes after acid treatment. The reactions of the anions of these arylhydro[60]fullerenes with either dimethylphenylsilylmethyl iodide or dimethyl(2‐isopropoxyphenyl)silylmethyl iodide yielded the target compounds, 1‐aryl‐4‐silylmethyl[60]fullerenes. The properties and structures of these 1‐aryl‐4‐silylmethyl[60]fullerenes (aryl=4‐MeOC6H4, thienyl) were examined by electrochemical studies, X‐ray crystallography, flash‐photolysis time‐resolved microwave‐conductivity (FP‐TRMC) measurements, and electron‐mobility measurements by using a space‐charge‐limited current (SCLC) model. Organic photovoltaic devices with a polymer‐based bulk heterojunction structure and small‐molecule‐based p–n and pin heterojunction configurations were fabricated by using 1‐aryl‐4‐silylmethyl[60]fullerenes as an electron acceptor. The most efficient device exhibited a power‐conversion efficiency of 3.4 % (short‐circuit current density: 8.1 mA/ cm2, open‐circuit voltage: 0.69 V, fill factor: 0.59).  相似文献   
136.
Abstract

A first total synthesis of gangliosides GD1c and GT1a containing Neu5Acα(2→8) Neu5Acα(2→3)Gal residue in their non-reducing terminal is described. Condensation of methyl O-[methyl 5-acetamido-8-O-(5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-α-D-galacto-2-nonulopyranosylono-11,9-lactone) -4,7- di-O-acetyl-3,5-dideoxy-D-glycero-α-D-galcto-2-nonulopyranosyranosylanate]-(2→3)-2,4,6-tri-O-benzoyl-1-thio-β-D-gala-ctopyranoside (1) with 2-(trimethylsilyl)ethyl O-(2-acetamido-4,6-O-benzylidene-2-deoxy-β-D-galactopyranosyl)- (1→4) -O -(2,3,6-tri-O-benzyl-β-D-galactopyranosyl)-(1→4)-2,3,6-tri-O-benzyl-β-D-glucopyranoside (2) or 2-(trimethylsilyl)ethyl O-(2-acetamido-6-O-benzyl-2-deoxy-β-D-galactopyranosyl)-(1→4)-(9-[methyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-α-D-galacto-2-nonulopyranosylonate)-(2→3)]-O-(2,6-di-O-benzyl-β-D-galactopyranosyl) - (1→4) - 2,3,6-tri-O-benzyl-β-D-glucopyranoside (3) in the presence of dimethyl(methylthio)sulfonium triflate (DMTST) gave the corresponding hexa-and heptasaccharide derivatives 4 and 5, respectively. These oligosaccharides were converted into the α-trichloroacetimidates 10 and 11 via reductive removal of the benzyl groups and/or benzylidene group, O-acetylation, selective removal of the 2-(trimethylsilyl)ethyl group and treatment with trichloroacetonitrile, which, on coupling with 2-azidosphingosine derivatives 12 or 13, gave the β-glycosides 14 and 15, respectively. Finally, 14 and 15 were transformed, via selective reduction of the azido group, coupling with octadecanoic acid and removal of all protecting groups, into the title gangliosides GD1c 18 and GT1a 19.  相似文献   
137.
Environmental transmission electron microscopy (ETEM) is used to monitor the catalytic combustion of diesel carbon soot upon exposure to molecular oxygen at elevated temperatures by using a gas‐injection specimen heating holder. The reaction conditions simulated in the ETEM experiments reconstruct real conditions effectively. This study demonstrated for the first time that soot combustion occurs at the soot–catalyst interface for both Ag/CeO2 and Cu/BaO/La2O3 catalysts.  相似文献   
138.
A polymer with many pendent galactose residues was prepared by atom-transfer radical polymerization (ATRP) of galactose-carrying vinyl monomer, 2-lactobionamidoethyl methacrylate (LAMA), with a disulfide-carrying ATRP initiator, 2-(2'-bromoisobutyroyl)ethyl disulfide (DT-Br). The galactose-carrying polymer obtained (DT-PLAMA) was accumulated as a polymer brush via Au-S bond on a colloidal gold monolayer deposited on a cover glass. For comparison, a disulfide which carried one galactose residue at both ends (2-lactobionamidoethyl disulfide, Cys-Lac) was accumulated as a self-assembled monolayer (SAM) on the colloidal gold monolayer, too. The association and dissociation processes of galactose residues on the colloidal gold with a lectin, Ricinus communis agglutinin (RCA(120)), were observed by the increase and decrease in absorbance at 550nm corresponding to localized surface plasmon resonance (LSPR) phenomena. The Cys-Lac SAM-carrying glass chip showed a strong non-specific adsorption of the lectin, whereas the DT-PLAMA brush-carrying one reversibly associated with the lectin, indicating reusability of the latter device. The apparent association constant of the lectin with the galactose residues in the DT-PLAMA brush was much larger than the association constant for free galactose, and the detection limit of RCA(120) by the glycopolymer brush-modified device was satisfactorily low. Furthermore, a microscopic observation clearly indicated that the DT-PLAMA brush could reversibly associate with a HepG2 cell having galactose receptors, though these processes could not be observed spectrophotometrically due to a gigantic size of the cell.  相似文献   
139.
The phenoxyl radical plays important roles in biological systems as cofactors in some metalloenzymes, such as galactose oxidase (GO) catalyzing oxidation of primary alcohols to give the corresponding aldehydes. Many metal(II)–phenoxyl radical complexes have hitherto been studied for understanding the detailed properties and reactivities of GO, and thus the nature of GO has gradually become clearer. However, the effects of the subtle geometric and electronic structural changes at the active site of GO, especially the structural change in the catalytic cycle and the effect of the second coordination sphere, have not been fully discussed yet. In this Review, we focus on further details of the model studies of GO and discuss the importance of the structural change at the active site of GO.  相似文献   
140.
Single‐site photocatalysts generally display excellent photocatalytic activity and considerably high stability compared with homogeneous catalytic systems. A rational structural design of single‐site photocatalysts with isolated, uniform, and spatially separated active sites in a given solid is of prime importance to achieve high photocatalytic activity. Intense attention has been focused on the design and fabrication of single‐site photocatalysts by using porous materials as a platform. Metal–organic frameworks (MOFs) have great potential in the design and fabrication of single‐site photocatalysts due to their remarkable porosity, ultrahigh surface area, extraordinary tailorability, and significant diversity. MOFs can provide an abundant number of binding sites to anchor active sites, which results in a significant enhancement in photocatalytic performance. In this focus review, the development of single‐site MOF photocatalysts that perform important and challenging chemical redox reactions, such as photocatalytic H2 production, photocatalytic CO2 conversion, and organic transformations, is summarized thoroughly. Successful strategies for the construction of single‐site MOF photocatalysts are summarized and major challenges in their practical applications are noted.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号