首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   78302篇
  免费   356篇
  国内免费   376篇
化学   24493篇
晶体学   792篇
力学   6744篇
数学   31927篇
物理学   15078篇
  2018年   10436篇
  2017年   10261篇
  2016年   6064篇
  2015年   852篇
  2014年   297篇
  2013年   325篇
  2012年   3796篇
  2011年   10506篇
  2010年   5631篇
  2009年   6043篇
  2008年   6617篇
  2007年   8773篇
  2006年   245篇
  2005年   1321篇
  2004年   1560篇
  2003年   1980篇
  2002年   1026篇
  2001年   247篇
  2000年   293篇
  1999年   158篇
  1998年   193篇
  1997年   155篇
  1996年   198篇
  1995年   120篇
  1994年   79篇
  1993年   101篇
  1992年   64篇
  1991年   72篇
  1990年   55篇
  1989年   61篇
  1988年   61篇
  1987年   61篇
  1986年   62篇
  1985年   51篇
  1984年   53篇
  1983年   42篇
  1982年   43篇
  1981年   45篇
  1980年   53篇
  1979年   47篇
  1978年   39篇
  1973年   26篇
  1914年   45篇
  1913年   40篇
  1912年   40篇
  1910年   24篇
  1909年   41篇
  1908年   40篇
  1907年   32篇
  1904年   28篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
91.
A mechanism-based plasticity model based on dislocation theory is developed to describe the mechanical behavior of the hierarchical nanocrystalline alloys. The stress–strain relationship is derived by invoking the impeding effect of the intra-granular solute clusters and the inter-granular nanostructures on the dislocation movements along the sliding path. We found that the interaction between dislocations and the hierarchical microstructures contributes to the strain hardening property and greatly influence the ductility of nanocrystalline metals. The analysis indicates that the proposed model can successfully describe the enhanced strength of the nanocrystalline hierarchical alloy. Moreover, the strain hardening rate is sensitive to the volume fraction of the hierarchical microstructures. The present model provides a new perspective to design the microstructures for optimizing the mechanical properties in nanostructural metals.  相似文献   
92.
This work describes the production and characterization of carbon-iron nanocomposites obtained from the decomposition of iron pentacarbonyl (Fe(CO)5) mixed with different carbon materials: a high surface area activated carbon (AC), powdered graphite (G), milled graphite (MG), and carbon black (CB). The nanocomposites were prepared either under argon or in ambient atmosphere, with a fixed ratio of Fe(CO)5 (4.0 mL) to carbon precursor (2.0 g). The images of scanning electron microscopy and the analysis of textural properties indicated the presence of nanostructured Fe compounds homogeneously dispersed into the different classes of pores of the carbon matrices. The elemental Fe content was always larger for samples prepared in ambient atmosphere, reaching values in the range of 20–32 wt%. On the other hand, samples prepared under argon showed reduced Fe content, with values in the range 5–10 wt% for samples prepared from precursors with low surface area (G, MG, and CB) and a much higher value (~19 wt%) for samples prepared from the precursor of high surface area (AC). Mössbauer spectroscopy and X-ray diffractometry showed that the nanoparticles were mostly composed of iron oxides in the case of the samples prepared in oxygen-rich ambient atmosphere and also for the AC-derived nanocomposite prepared under argon, which is consistent with the large oxygen content of this precursor. For the other precursors, with reduced or no oxygen content, metallic iron and iron carbides were found to be the dominant phases in samples prepared under oxygen-free atmosphere. The samples prepared in ambient atmosphere and the AC-derived sample prepared under argon exhibited superparamagnetic behavior at room temperature, as revealed by temperature-dependent magnetization curves and Mössbauer spectroscopy.  相似文献   
93.
The thermophoretic sampling of particulates from hot media, coupled with transmission electron microscope (TEM) imaging, is a combined approach that is widely used to derive morphological information. The identification and the measurement of the particulates, however, can be complex when the TEM images are of low contrast, noisy, and have non-uniform background signal level. The image processing method can also be challenging and time consuming, when the samples collected have large variability in shape and size, or have some degree of overlapping. In this work, a three-stage image processing sequence is presented to facilitate time-efficient automated identification and measurement of particulates from the TEM grids. The proposed processing sequence is first applied to soot samples that were thermophoretically sampled from a laminar non-premixed ethylene-air flame. The parameter values that are required to be set to facilitate the automated process are identified, and sensitivity of the results to these parameters is assessed. The same analysis process is also applied to soot samples that were acquired from an externally irradiated laminar non-premixed ethylene-air flame, which have different geometrical characteristics, to assess the morphological dependence of the proposed image processing sequence. Using the optimized parameter values, statistical assessments of the automated results reveal that the largest discrepancies that are associated with the estimated values of primary particle diameter, fractal dimension, and prefactor values of the aggregates for the tested cases, are approximately 3, 1, and 10 %, respectively, when compared with the manual measurements.  相似文献   
94.
Nickel-cobalt binary oxide/reduced graphene oxide (G-NCO) composite with high capacitance is synthesized via a mild method for electrochemical capacitors. G-NCO takes advantages of reduced graphene oxide (RGO) and nickel-cobalt binary oxide. As an appropriate matrix, RGO is beneficial to form homogeneous structure and improve the electron transport ability. The binary oxide owns more active sites than those of nickel oxide and cobalt oxide to promote the redox reaction. Attributed to the well crystallinity, homogeneous structure, increased active sites, and improved charge transfer property, the G-NCO composite exhibits highly enhanced electrochemical performance compared with G-NiO and G-Co3O4 composites. The specific capacitance of the G-NCO composite is about 1750 F g?1 at 1 A g?1 together with capacitance retention of 79 % (900/1138 F g?1) over 10,000 cycles at 4 A g?1. To research its practical application, an asymmetric supercapacitor with G-NCO as positive electrode and activated carbon as negative electrode was fabricated. The asymmetric device exhibits a prominent energy density of 37.7 Wh kg?1 at a power density of 800 W kg?1. The modified G-NCO composite shows great potential for high-capacity energy storage.  相似文献   
95.
96.
97.
98.
Many real-world networks such as the protein–protein interaction networks and metabolic networks often display nontrivial correlations between degrees of vertices connected by edges. Here, we analyse the statistical methods used usually to describe the degree correlation in the networks, and analytically give linear relation in the degree correlation. It provides a simple and interesting perspective on the analysis of the degree correlation in networks, which is usefully complementary to the existing methods for degree correlation in networks. Especially, the slope in the linear relation corresponds exactly to the degree correlation coefficient in networks, meaning that it can not only characterize the level of degree correlation in networks, but also reflects the speed that the average nearest neighbours’ degree varies with the vertex degree. Finally, we applied our results to several real-world networks, validating the conclusions of the linear analysis of degree correlation. We hope that the work in this paper can be helpful for further understanding the degree correlation in complex networks.  相似文献   
99.
The thawing process for boiled and frozen edible vegetables was traced by a dedicated MRI for food research. The MRI system is small, with a 1.0-T static magnetic field, and can be placed in an ordinary research room with a light air conditioner. Images of green soybeans, broad beans, okra, asparagus and taro were measured by the spin-echo method (echo time=7 ms) with 0.1 or 0.2 s and 1 s repetition times. The images appeared along with the thawing time, and signals uniformly covered the sliced plane of the samples in the thawed condition. Information about the thawing process and tissue structures of the materials was obtained during transit thawing conditions. The thawing kinetics were examined with increased signal intensity, which were divided into two types. The signal increased linearly and saturated for okra and asparagus but exhibited convex curves for soybeans, broad beans and taro. The small MRI was stable, its handling was simple, and the internal structures of food materials could be accurately identified, although the grey-scale of the images was insufficient for determining precise textural fluctuations of tissue organization. We conclude that the devised MRI is useful for examining the quality of frozen foods and for developmental research into frozen foods.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号