首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   649篇
  免费   23篇
  国内免费   1篇
化学   531篇
晶体学   10篇
力学   5篇
数学   28篇
物理学   99篇
  2022年   3篇
  2021年   4篇
  2020年   10篇
  2019年   11篇
  2018年   8篇
  2017年   2篇
  2016年   12篇
  2015年   15篇
  2014年   12篇
  2013年   31篇
  2012年   30篇
  2011年   40篇
  2010年   19篇
  2009年   22篇
  2008年   36篇
  2007年   36篇
  2006年   41篇
  2005年   44篇
  2004年   41篇
  2003年   29篇
  2002年   16篇
  2001年   25篇
  2000年   8篇
  1999年   8篇
  1998年   5篇
  1997年   12篇
  1996年   5篇
  1995年   5篇
  1994年   9篇
  1993年   7篇
  1992年   8篇
  1991年   4篇
  1990年   5篇
  1989年   4篇
  1988年   4篇
  1987年   9篇
  1986年   3篇
  1985年   10篇
  1984年   5篇
  1983年   9篇
  1982年   6篇
  1981年   4篇
  1980年   8篇
  1979年   5篇
  1978年   12篇
  1977年   6篇
  1976年   2篇
  1975年   9篇
  1974年   6篇
  1971年   4篇
排序方式: 共有673条查询结果,搜索用时 281 毫秒
21.
The colloidal stability of V2O5 nH2O was studied on the basis of the measurements of critical flocculation concentration (CFC) by metal ions, amount of ions exchanged (or intercalated), and -potential. In total, the CFC values obeyed the Schulze Hardy law and strong Hofmeister's series was found in the systems including alkaline ions. The sequence of colloidal stability of V2O5 nH2O in the electrolyte solutions was related to the intercalation of metal ions in the interlayer spaces of the solid. The largest CFC value for Li+ (87 mmol dm–3) was explained by smaller affinity of Li+ to be intercalated in V2O5 nH2O as well as smaller Hamaker constant of the intercalated solid compared to the other systems.Effect of intercalation of metal ions on the crystalline properties of the materials was measured by use of XRD and electron microscope. Under highly dehydrated condition the ions whose radii are smaller than 0.1 nm are captured in the structure of V2O5 nH2O without changing interlayer distances, while those larger than 0.1 nm increase the interlayer distance. In a saturated H2O vapor interlayer distances increased with increasing charge of intercalated ions. However, when intercalated with ions carrying the same valency the interlayer distances of the sample decreased with decrease in the hydration property of ions. Hydrolyzable Cr3+ gave exceptionally larger interlayer distances, both in a vacuum and in H2O vapor.  相似文献   
22.
The π-allyl nickel halide-oxygen system was found to be active as catalyst for stereospecific polymerization of butadiene. The catalyst from π-allyl nickel chloride or π-allyl nickel bromide yields the polymer of 90% cis-1,4 content with high activity, whereas the catalyst from π-allyl nickel iodide affords a polymer of 70% or less cis-1,4 content. The catalyst systems can be fractionated into two parts on the basis of solubility in benzene. It is concluded that the catalyst activity originates essentially from the benzene-insoluble nickel complex which is composed of oxygen, halogen, σ-allyl group, and nickel. The structure of growing polymer terminal is discussed in relation to the mechanism of the stereospecific polymerization.  相似文献   
23.
To investigate the possibility of 14CO2 fixation using microorganisms in a high-dose area, the photosynthetic activity (specific production rate: SPR) and cellular proliferation (colony forming unit: CFU) of Euglena gracilis Z irradiated with gamma-rays at a dose of 0 to 500 Gy were determined. The dose responses of SPR and CFU suggested that it was possible to operate a CO2 fixation system of Euglena up to 100 Gy. Even at a dose of 500 Gy, about half of the photosynthetic activity under non-irradiated condition was considered possible.  相似文献   
24.
Reactions of [Ni(tren)(H(2)O)(2)]X(2) (tren = tris(2-aminoethyl)amine; X = Cl (1a), Br (1b); X(2) = SO(4) (1c)) with mannose-type aldoses, having a 2,3-cis configuration (D-mannose and L-rhamnose), afforded {bis(N-aldosyl-2-aminoethyl)(2-aminoethyl)amine}nickel(II) complexes, [Ni(N,N'-(aldosyl)(2)-tren)]X(2) (aldosyl = D-mannosyl, X = Cl (2a), Br (2b), X(2) = SO(4) (2c); aldosyl = L-rhamnosyl, X(2) = SO(4) (3c)). The structure of 1c was confirmed by X-ray crystallography to be a mononuclear [Ni(II)N(4)O(2)] complex with the tren acting as a tetradentate ligand (1c.2H(2)O: orthorhombic, Pbca, a = 15.988(2) ?, b = 18.826(4) ?, c = 10.359(4) ?, V = 3118 ?(3), Z = 8, R = 0.047, and R(w) = 0.042). Complexes 2a,c and 3c were characterized by X-ray analyses to have a mononuclear octahedral Ni(II) structure ligated by a hexadentate N-glycoside ligand, bis(N-aldosyl-2-aminoethyl)(2-aminoethyl)amine (2a.CH(3)OH: orthorhombic, P2(1)2(1)2(1), a = 16.005(3) ?, b = 20.095(4) ?, c = 8.361(1) ?, V = 2689 ?(3), Z = 4, R = 0.040, and R(w) = 0.027. 2c.3CH(3)OH: orthorhombic, P2(1)2(1)2(1), a = 14.93(2) ?, b = 21.823(8) ?, c = 9.746(2) ?, V = 3176 ?(3), Z = 4, R = 0.075, and R(w) = 0.080. 3c.3CH(3)OH: orthorhombic, P2(1)2(1)2(1), a = 14.560(4) ?, b = 21.694(5) ?, c = 9.786(2) ?, V = 3091 ?(3), Z = 4, R = 0.072, and R(w) = 0.079). The sugar part of the complex involves novel intramolecular sugar-sugar hydrogen bondings around the metal center. The similar reaction with D-glucose, D-glucosamine, and D-galactosamine, having a 2,3-trans configuration, resulted in the formation of a mono(sugar) complex, [Ni(N-(aldosyl)-tren)(H(2)O)(2)]Cl(2) (aldosyl = D-glucosyl (4b), 2-amino-2-deoxy-D-glucosyl (5a), and 2-amino-2-deoxy-D-galactosyl (5b)), instead of a bis(sugar) complex. The hydrogen bondings between the sugar moieties as observed in 2 and 3 should be responsible for the assembly of two sugar molecules on the metal center. Reactions of tris(N-aldosyl-2-aminoethyl)amine with nickel(II) salts gave the tris(sugar) complexes, [Ni(N,N',N"-(aldosyl)(3)-tren)]X(2) (aldosyl = D-mannosyl, X = Cl (6a), Br (6b); L-rhamnosyl, X = Cl (7a), Br (7b); D-glucosyl, X = Cl (9); maltosyl, X = Br (10); and melibiosyl, X = Br (11)), which were assumed to have a shuttle-type C(3) symmetrical structure with Delta helical configuration for D-type aldoses on the basis of circular dichroism and (13)C NMR spectra. When tris(N-rhamnosyl)-tren was reacted with NiSO(4).6H(2)O at low temperature, a labile neutral complex, [Ni(N,N',N"-(L-rhamnosyl)(3)-tren)(SO(4))] (8), was successfully isolated and characterized by X-ray crystallography, in which three sugar moieties are anchored only at the N atom of the C-1 position (8.3CH(3)OH.H(2)O: orthorhombic, P2(1)2(1)2(1), a = 16.035(4) ?, b = 16.670(7) ?, c = 15.38(1) ?, V = 4111 ?(3), Z = 4, R = 0.084, and R(w) = 0.068). Complex 8 could be regarded as an intermediate species toward the C(3) symmetrical tris(sugar) complexes 7, and in fact, it was readily transformed to 7b by an action of BaBr(2).  相似文献   
25.
Ema T  Ouchi N  Doi T  Korenaga T  Sakai T 《Organic letters》2005,7(18):3985-3988
A new type of chiral receptor (R,R)- or (S,S)-1b with C(2) symmetry was synthesized. An induced-fit type of binding behavior of 1b for diamines was revealed by CD spectroscopy. NMR studies demonstrated that 1b can function as a highly sensitive chiral shift reagent for the determination of the enantiomeric purity of chiral diamines, aziridine, and isoxazoline at the microgram level. [structure: see text]  相似文献   
26.
Sperm whale myoglobin, an oxygen storage hemoprotein, was successfully reconstituted with the iron porphycene having two propionates, 2,7-diethyl-3,6,12,17-tetramethyl-13,16-bis(carboxyethyl)porphycenatoiron. The physicochemical properties and ligand bindings of the reconstituted myoglobin were investigated. The ferric reconstituted myoglobin shows the remarkable stability against acid denaturation and only a low-spin characteristic in its EPR spectrum. The Fe(III)/Fe(II) redox potential (-190 mV vs NHE) determined by the spectroelectrochemical measurements was much lower than that of the wild-type. These results can be attributed to the strong coordination of His93 to the porphycene iron, which is induced by the nature of the porphycene ring symmetry. The O2 affinity of the ferrous reconstituted myoglobin is 2600-fold higher than that of the wild-type, mainly due to the decrease in the O2 dissociation rate, whereas the CO affinity is not so significantly enhanced. As a result, the O2 affinity of the reconstituted myoglobin exceeds its CO affinity (M' = K(CO)/K(O2) < 1). The ligand binding studies on H64A mutants support the fact that the slow O2 dissociation of the reconstituted myoglobin is primarily caused by the stabilization of the Fe-O2 sigma-bonding. The IR spectra for the carbon monoxide (CO) complex of the reconstituted myoglobin suggest several structural and/or electrostatic conformations of the Fe-C-O bond, but this is not directly correlated with the CO dissociation rate. The high O2 affinity and the unique characteristics of the myoglobin with the iron porphycene indicate that reconstitution with a synthesized heme is a useful method not only to understand the physiological function of myoglobin but also to create a tailor-made function on the protein.  相似文献   
27.
A tritriacontanucleotide which has the sequence of the 5-?half molecule of E.coli glycine tRNA2, was synthesized by the phosphotriester method involving p-anisidate protection for the 3-?phosphate ends. Di- and trinucleotide units were prepared from 5-?dimethoxytrityl-2-?O-tetrahydrofuranyl-3?-O-(o-chlorophenyl)phosphoryl derivatives of uridine, N-benzoylcytidine, N-benzolyadenosine and N-iso-butyrylguanosine by condensation with 3,?5-?unprotected nucleosides followed by phosphorylation to give 3-?phosphodiester blocks. The 3-?terminal dimers and trimers were synthesized by using 3-?(o- chlorophenyl)phosphoro-p-anisidates instead of 3?,5?-unprotected nucleosides. The 3?-phosphodiesters of oligonucleotides with a chain length of larger than 5 were obtained by removal of the 3?-phosphoro-p-anisidate with isoamyl nitrite. The 5-?dimethoxytrityl group was removed by treatment with zinc bromide under anhydrous conditions. Fragments were designed to use common dimer blocks and to reduce the step for 5-?deblocking of larger fragments. Finally a 3-?phosphodiester block with a chain length of 20 was condensed with a 5-?OH component (tridecanucleotide). The fully protected 33 mer was deblocked and purified by chromatography. The structural integrity of the product was confirmed by mobility shift analysis and complete digestion with RNase T2.  相似文献   
28.
29.
30.
Palladium-catalyzed decarboxylative alkynylation of α-acyloxyketones triggered by C(sp3)−O bond cleavage is disclosed. The decarboxylation strategy featuring a neutral reaction condition enabled an unprecedent catalytic alkynylation of a ketone enolate. The reaction was applied to a variety of substrates, giving desired products in good yields. We successfully obtained X-ray crystallography of a new palladium–enolate intermediate that was synthesized by a reaction of [Pd(cod)(CH2TMS)2] with XPhos and α-acyloxyketone at room temperature, indicating facile C(sp3)−O bond disconnection.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号