首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2239篇
  免费   106篇
  国内免费   11篇
化学   1786篇
晶体学   32篇
力学   25篇
数学   129篇
物理学   384篇
  2023年   15篇
  2022年   14篇
  2021年   33篇
  2020年   40篇
  2019年   47篇
  2018年   22篇
  2017年   19篇
  2016年   56篇
  2015年   39篇
  2014年   75篇
  2013年   102篇
  2012年   155篇
  2011年   139篇
  2010年   102篇
  2009年   65篇
  2008年   147篇
  2007年   118篇
  2006年   130篇
  2005年   138篇
  2004年   141篇
  2003年   109篇
  2002年   81篇
  2001年   34篇
  2000年   28篇
  1999年   18篇
  1998年   12篇
  1997年   26篇
  1996年   30篇
  1995年   23篇
  1994年   12篇
  1993年   18篇
  1992年   17篇
  1991年   21篇
  1990年   15篇
  1989年   16篇
  1988年   18篇
  1987年   19篇
  1986年   17篇
  1985年   24篇
  1984年   33篇
  1983年   15篇
  1982年   15篇
  1981年   24篇
  1980年   18篇
  1979年   24篇
  1978年   14篇
  1977年   20篇
  1976年   12篇
  1975年   7篇
  1973年   11篇
排序方式: 共有2356条查询结果,搜索用时 218 毫秒
61.
Proton hyperfine data are reported for the radical anions of 1,8-di (propyn-1-yl)-naphthalene (I), 7,8,12,13-tetradehydro-10,11-dihydro-9H-cyclodeca[d,e]naphthalene (II) and 2,2′-di(propyn-1-yl)-biphenyl (III), as well as of 5,6,11,12-tetradehydro-7,8,9,10-tetrahydro-dibenzo[a,c]cyclodecene (IV) and its 8,8,9,9-tetradeuterio-derivative (IV-d4). The triple bonds in I and II can be regarded as roughly parallel, while those in IV (and IV-d4) may be considered as crossed. The π-spin distributions in I? to IV? are discussed in terms of simple MO models which suggest a weekly bonding interaction between the acetylenic fragments in IV?, in contrast to III? where such an effect appears to be negligible. The importance of an analogous interaction in I? and II? is difficult to deduce, since its inclusion into a MO model does not substantially affect the π-spin distribution in these radical anions.  相似文献   
62.
The crystal structures of the four title clathrate compounds Cd(NH3)2Cd(CN)4 · 2C6H6,I, Cd(NH3)2Cd(CN)4 · 2C6H5NH2,II, Cd(NH2CH2CH2NH2)Cd(CN)4 · 2 C6H5NH2,III, and Cd(C6H5NH2)2Cd(CN)4 · 0.5C6H5NH2,IV, have been analyzed by single crystal X-ray diffraction methods. CompoundI crystallizes in the monoclinic space groupC2/c,a = 12.063(2),b = 12.174(2),c = 14.621(1) Å,β = 90.976(9)°,Z = 4,R = 0.042 for 2388 reflections;II: monoclinic C2/c,a = 12.1951(9),b = 12.078(1),c = 14.6921(7) Å,β = 93.436(5)°,Z = 4,R = 0.039 for 2374 reflections;III: monoclinicCc,a = 11.027(1),b = 12.0767(9),c = 15.837(1) Å,β = 92.059(9)°,Z = 4,R = 0.041 for 2883 reflections; andIV: monoclinicP21/n,a = 15.169(2),b = 16.019(2),c = 8.866(1) Å,β = 95.73(1)°,Z = 4,R = 0.052 for 3612 reflections. The three-dimensionalcatena-[diamminecadmium(II) tetra-μ-cyanocadmate(II)] hosts ofI andII are substantially isostructural to that of the already known Hofmann-Td-type Cd(NH3)2Hg(CN)4 · 2C6H6. The three-dimensional en-Td-typecatena-[catena-μ-ethylenediaminecadmium(II) tetra-μ-cyanocadmate(II)] host ofIII, reinforced by the catena-μ-en linking between the octahedral Cd atoms, accommodates the aniline as the guest with a monoclinic distortion from the tetragonal symmetry of the previously reported en-Td-type benzene clathrate. InIV dual behavior of aniline, one as the unidentate ligand in the three-dimensional host and the other as the guest in the cage-like cavity, has been demonstrated.  相似文献   
63.
Faradaic, impedances at model electrodes partially covered with a photoresist layer have been studied theoretically and experimentally. Equations for the faradaic impedance are derived based on the theoretical model and approach described in Part I of this series of papers. Experimental data for the hexacyanoferrate system at various model electrodes give excellent agreement, with theoretical predictions for the diffusion impedance behavior, and the applicability of the derived equations to the estimation of the degree of coverage and the size of the active regions is confirmed. Furthermore, the application of such model electrodes to the kinetic study of electrode reactions with high heterogeneous charge transfer rates is suggested.  相似文献   
64.
We have investigated negative charge carrier transport in the smectic mesophases of the 2-phenylnaphthalene derivative, 6-(4'-octylphenyl)-2-dodecyloxynaphthalene (8-PNP-O12), using the time-of-flight (TOF) method. We revealed that the negative charge carrier transport in its smectic mesophases had two different mechanisms, i.e., electronic and ionic conductions: we observed two transits of the carriers in both the smectic A (SmA) and smectic B (SmB) phases and demonstrated their origins by dilution experiments with a hydrocarbon (n-dodecane); the fast transit was attributed to the electronic transport of electrons and the slow one to the ionic transport of negative ions. Furthermore, it was clarified that the ionic transport was caused by small amounts of chemical impurities ionized by trapping photogenerated electrons in 8-PNP-O12 in addition to photoinduced autoionization of the impurities. Furthermore, we determined the trapping lifetimes for electrons to be 140 and 24 mus for the SmA and SmB phases, respectively. The experimental results suggest the coexistence of two distinctive transport channels for these charge carriers in the smectic mesophases.  相似文献   
65.
Two novel palladium(0)-catalyzed cyclizations of allenenes are described. Treatment of allenenes such as N-(1-alkyl-2,3-butadienyl)-N-allylsulfonamide with an aryl halide and K(2)CO(3) in the presence of a catalytic amount of Pd(PPh(3))(4) in dioxane affords 2,3-cis-pyrrolidines in a stereoselective manner. In sharp contrast, cyclization of the same allenenes using catalytic Pd(2)(dba)(3) x CHCl(3) in the presence of allyl methyl carbonate in CH(3)CN leads to stereoselective formation of a 3-azabicyclo[3.1.0]hexane framework in moderate yields.  相似文献   
66.
Alkyl radicals generated by treatment of thiocarbamates of conformationally favorable 3-alkyl-3-arylpropan-1-ols with tris(trimethylsilyl)silane and AIBN efficiently undergo intramolecular ipso substitution of the methoxy group, yielding the corresponding cyclized products. In contrast, either conformationally favorable or flexible 1-arylalkan-3- or 4-ones easily cyclize into five- or six-membered condensed rings by treatment with SmI(2) via ketyl radical intermediates. The addition of HMPA as cosolvent dramatically changes the cyclization mode of the SmI(2)-induced reaction, and the para-cyclization products are exclusively formed. This "HMPA effect" can be rationalized by the strong chelating ability of HMPA with the samarium atom.  相似文献   
67.
Some cis,cis,cis-RuX(2)(Me(2)SO)(2)(1,2-Me(2)Im)L complexes [L = 1,2-Me(2)Im (1,2-dimethylimidazole) or Me(3)Bzm (1,5,6-trimethylbenzimidazole), X = Cl or Br, and Me(2)SO = S-bonded DMSO] have been synthesized and their rotamers studied in CDCl(3). From 2D NMR data, cis,cis,cis-RuCl(2)(Me(2)SO)(2)(1,2-Me(2)Im)(Me(3)Bzm) has 1,2-Me(2)Im in position "a" (cis to both Me(2)SO's and cis to "b") and Me(3)Bzm in position "b" (trans to one Me(2)SO and cis to the other). There are two stable atropisomers [head-to-tail (HT, 84%) and head-to-head (HH, 16%), defining the aromatic H of Ru-N-C-H as head for both ligands]. Me(3)Bzm has the same orientation in both atropisomers. In this orientation, the unfavorable interligand steric interactions of Me(3)Bzm with the Me(2)SO and 1,2-Me(2)Im ligands appear to be countered by favorable electrostatic attraction between the delta+ N(2)CH moiety of Me(3)Bzm and the delta- cis Cl ligands. The 1,2-Me(2)Im lacks a delta+ N(2)CH group, and its orientation is dominated by steric effects of the 2-Me group. The NMR spectrum of cis,cis,cis-RuCl(2)(Me(2)SO)(2)(1,2-Me(2)Im)(2) is consistent with four rotamers in restricted rotation about both Ru-N bonds: two HH and two HT. 2D NMR techniques (NOESY and ROESY) afforded complete proton signal assignments. The ligand disposition could be assessed from the large chemical shift dispersion of some 1,2-Me(2)Im ligand signals (Delta 0.86-1.52 ppm) arising from cis-1,2-Me(2)Im shielding modulated by deshielding influences of the cis halides. The relative stability of the four rotamers correlates best with steric interactions between the 2-Me groups and the Me(2)SO ligands. The most favorable conformer (46%) is the HH rotamer with both 2-Me groups pointing away from the Me(2)SO ligands. The least favorable conformer (14%) was also HH, but the methyl groups in this case point toward the Me(2)SO ligands. In the HT conformers of intermediate stability ( approximately 20%), one 2-Me group is toward and the other is away from the Me(2)SO ligands. The exchange cross-peaks in the 2D spectra are unusually informative about the dynamic processes in solution; the spectra provide evidence that the rotamers interchange in a definite pattern of succession. Thus, all conceivable exchange pathways are not available. 1,2-Me(2)Im "b" can rotate regardless of the orientation of 1,2-Me(2)Im "a". 1,2-Me(2)Im "a" can rotate only when "b" has the orientation with its 2-Me group directed away from "a". Thus, 1,2-Me(2)Im "b" can switch 1,2-Me(2)Im "a" rotation on or off.  相似文献   
68.
To investigate the possibility of structural assignment based on negative-ion MS2 spectral matching, three isomeric pairs of 2-aminopyridine (PA)-derivatized non-fucosylated, fucosylated, and sialylated oligosaccharides (complex type N-glycans) were analyzed using high-performance liquid chromatography/ion trap mass spectrometry (HPLC/ITMS) with a sonic-spray ionization (SSI) source. In the SSI negative-ion mode the deprotonated molecule [M-2H]2- becomes prominent. Negative-ion MS2 spectra derived from such ions contain many fragment types (B and Y, C and Z, A, and D) and therefore are more informative than the positive-ion MS2 spectra derived from [M+H+Na]2+ ions, which usually consist mainly of B and Y fragment ions. In particular the internal ions (D- and E-type ions) provided useful information about the alpha1-6 branching patterns and the bisecting GlcNAc residue. Spectral matching based on the correlation coefficients between negative-ion MS2 spectra was performed in a manner similar to the positive-ion MS2 spectral matching previously reported. It was demonstrated that negative-ion MS2 spectral matching is as useful and applicable to the structural assignment of relatively large non-fucosylated, fucosylated, and sialylated PA-oligosaccharide isomers as its positive-ion counterpart.  相似文献   
69.
The series of alkyl 4-[2-(perfluorooctyl)ethoxy]benzoates (F8-n) shows a systematic change of crystal structures depending on the length of the alkyl chain: separate packing of perfluorooctyl (Rf) and alkyl (Rh) chains from each other for shorter (n=2) and longer (n=11) members, alternate packing of Rf and Rh chains for middle (n=6,7) members, and an intermediate type of packing for n=4. Semiempirical MO calculations show slightly repulsive interactions between the Rf chains, and attractive ones between Rf and Rh chains and between Rh and the core of a molecular pair. It is concluded that fluorination determines the molecular shape of the crystal structures by making the chain rigid. It is confirmed that the interactions between Rf chains are small compared with those between other moieties and that they are forced to aggregate owing to the exclusion from other moieties. Thus, the effect is dependent on the geometries and intermolecular interactions of the other moieties.  相似文献   
70.
A laser-induced fluorescence spectrum was observed in the 500-560 nm region when a mixture of 1,4-cyclohexadiene and oxalyl chloride was photolyzed at 193 nm. The observed excitation spectrum was assigned to the A (2)A(2)<--X (2)B(1) transition of the cyclohexadienyl radical c-C6H7, produced by abstraction of a hydrogen atom from 1,4-cyclohexadiene by Cl atoms. The origin of the A<--X transition of c-C(6)H(7) was at 18 207 cm(-1). From measurements of the dispersed fluorescence spectra and ab initio calculations, the frequencies of several vibrational modes in both the ground and excited states of c-C(6)H(7) were determined: nu(5)(C-H in-plane bend)=1571, nu(8)(C-H in-plane bend)=1174, nu(10)(C-C-C in-plane bend)=981, nu(12)(C-C-C in-plane bend)=559, nu(16)(C-C-C out-of-plane bend)=375, and nu(33)(C-C-C in-plane bend)=600 cm(-1) for the ground state and nu(8)=1118, nu(10)=967, nu(12)=502, nu(16)=172, and nu(33)=536 cm(-1) for the excited states.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号