首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26413篇
  免费   36篇
  国内免费   230篇
化学   8244篇
晶体学   241篇
力学   1857篇
数学   8103篇
物理学   8234篇
  2022年   9篇
  2021年   15篇
  2020年   11篇
  2019年   16篇
  2018年   1972篇
  2017年   2238篇
  2016年   983篇
  2015年   650篇
  2014年   542篇
  2013年   835篇
  2012年   1852篇
  2011年   1110篇
  2010年   59篇
  2009年   167篇
  2008年   179篇
  2007年   176篇
  2006年   190篇
  2005年   5875篇
  2004年   5694篇
  2003年   3154篇
  2002年   308篇
  2001年   70篇
  2000年   55篇
  1999年   31篇
  1998年   30篇
  1997年   13篇
  1996年   15篇
  1995年   19篇
  1994年   21篇
  1993年   24篇
  1992年   32篇
  1991年   19篇
  1990年   21篇
  1989年   18篇
  1988年   22篇
  1987年   20篇
  1986年   16篇
  1985年   29篇
  1984年   19篇
  1983年   12篇
  1982年   7篇
  1981年   8篇
  1980年   16篇
  1979年   18篇
  1978年   19篇
  1977年   13篇
  1976年   11篇
  1974年   13篇
  1973年   18篇
  1972年   7篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
31.
Mycotoxins are secondary metabolites, formed by the action of fungi on agricultural crops in the field or during storage. These metabolites are highly toxic to animals and humans and high levels have been measured in agricultural crops. In order to evaluate human risks due to ingestion of mycotoxin-contaminated food different methods have been developed for analysis of mycotoxins in cereals and maize. In this project the focus was on mycotoxins in agricultural soil and the fate of these toxins in the soil-water-plant system. Two different mycotoxins were selected in the study: zearalenone (ZON) produced by species of Fusariumor Aspergillusand ochratoxin A (OTA) produced by species of Penicillium. We developed a method for analysis of these toxins in soil. Soil samples were extracted with methanol-water (9:1) and purified by solid-phase extraction (SPE, C8-columns). The final extract was analysed using high-pressure liquid chromatography (HPLC) with fluorescence detection. A Phenyl Hexyl column was used to separate the toxins. The detection limits obtained were 0.1 and 1.0 microg kg(-1) dry weight (dw) for OTA and ZON, respectively. The developed method has been used for analysis of different soils in connection with growth chamber experiments. The soil types used in the growth chamber experiments were a sandy soil, a sandy clay soil, and a soil with high content of organic matter. The recovery was determined as 85.8 and 93.4% and the repeatability to 5.1 and 12.8% for OTA and ZON, respectively. The reproducibility obtained was 8.5 and 15.0% for soil samples, representing concentration levels from 0.2-30 microg kg(-1) dw (OTA) and from 1.0-100 microg kg(-1) dw (ZON).  相似文献   
32.
33.
The molecular complex formation reactions of uridine (Urd) with adenosine (Ado), cytidine (Cyd), thymidine (Thd), adenosine 5-monophosphate (AMP) and cytidine 5-monophosphate (CMP) have been studied at 20°C. It was found that the main positive noncovalent centers of ion–dipole and dipole–dipole type interactions are the protonated N(3) atoms of Urd, whereas the negative centers are the endocyclic atoms of the bases characterized by high electron density from the second molecule involved in the reaction. Moreover, NMR results indicate the occurrence of stacking in the complex (Urd)H(Cyd), whereas in the complex, (Urd)H2(Thd), it is the only type of interaction. Deprotonation of the latter species brings about a change in the character of the reaction and ion–dipole interactions have been detected in the adduct, (Urd)H(Thd). Interestingly, no involvement of the phosphate groups in the formation of AMP and CMP adducts has been evidenced and the main centers of the reactions were found to be the N(7)and N(1) atoms of AMP, or the N(3) atoms of CMP and Urd. Moreover, in the Urd/CMP system the NMR results suggest stacking-type interactions.  相似文献   
34.
The d.c. polarographic current-potential curves of Cd(II)-EDTA complexes were examined in the pH range 0.5–10.0, to elucidate the mechanism of their electrode processes and to determine the relevant electrochemical kinetic parameters. It was shown that the first wave observed below pH 3 at ?0.58 to ?0.65 V vs. SCE is the reversible reduction wave of Cd(II) aquo-ion with kinetically-controlled limiting current, and the second wave observed above pH 1.5 at ?0.75 to ?1.21 V vs. SCE corresponds to the simultaneous irreversible reduction of four complex species, CdH3L+, CdH2L, CdHL? and CdL2?, where CdHpL(p?2)+ and L4? denote the protonated complex species with p protons and the unprotonated EDTA ion, respectively. Analysis of the dependence of limiting current on the hydrogen ion concentration led to the conclusion that the preceding reaction determining the behaviour of limiting current is CdH3L+?Cd2++H3L? with k3d=6.3×102 s?1 and k3f=3.3×106 s?1M?1, where k3d and k3f are the dissociation and formation rate constants, respectively. On the other hand, from analysis of the dependence of half-wave potentials of the second wave on the hydrogen ion concentration, the kinetic parameters of the four complex species were evaluated, and are given in Table 1. Further, it was shown that the cathodic rate constants of these four charge transfer processes at some reference potential together with those of Cd(II)-HEDTA complexes fulfil the linear free energy relationship.  相似文献   
35.
Selenomethionine contents of NIST wheat reference materials   总被引:1,自引:0,他引:1  
Values of the total selenium and selenomethionine (Semet) content of four wheat-based reference materials have been obtained by gas chromatography-stable isotope dilution mass spectrometry methods. The total Se method is an established one, and the results obtained with it are consistent with previously-assigned values. The Semet method (previously reported by our laboratory) is based on reaction with CNBr. Our data indicate that the four wheat samples (wheat gluten, durum wheat, hard red spring wheat, and soft winter wheat), though having a 30-fold range in total Se content, all have about 45% of their total Se values in the form of selenomethionine. Investigation of the CNBr-based method suggests that additional experiments are needed to verify that all selenomethionine in the wheat samples is accounted for, but also indicates that the values obtained are within 15% of the true values. As the form in which Se occurs in foods and dietary supplements is important from a nutritional perspective, adding information about Se speciation to total Se values in appropriate reference materials makes these materials more valuable in relevant analytical work.  相似文献   
36.
Recently, high oxide ion conduction has been observed in the apatite-type systems La9.33+x(Si/Ge)6O26+x/2, with conductivities approaching and even exceeding that of yttria-stabilized zirconia. The Ge-based phases have been reported to suffer from Ge loss and undergo irreversible structural changes on sintering at the high temperatures required to obtain dense pellets. In this paper we discuss doping studies (Ba, Bi for La) aimed at stabilizing the hexagonal apatite lattice to high temperature, and/or lowering the synthesis and sintering temperatures. The results show that doping with Ba helps to stabilize the hexagonal lattice at high temperatures, although Ge loss appears to still be a problem. Conductivity data show that, as previously reported for the Si-based systems, non-stoichiometry in the form of cation vacancies and/or oxygen excess is required to achieve high oxide ion conduction in these Ge-based systems. Neutron diffraction structural data for the fully stoichiometric phase La8Ba2Ge6O26 shows that the channel oxygen atoms show little anisotropy in their thermal displacement parameters, consistent with the low oxide ion conductivity of this phase. Bi doping is shown to lower the synthesis and sintering temperatures, although the presence of Bi means that these samples are not stable at high temperatures under reducing conditions.Presented at the OSSEP Workshop Ionic and Mixed Conductors: Methods and Processes, Aveiro, Portugal, April 10–12, 2003  相似文献   
37.
The formation of covalently linked composites of multi–walled carbon nanotubes (MWCNT) and glucose oxidase (GOD) with high-function density for use as a biosensing interface is described. The reaction intermediates and the final product were characterized by using FT–IR spectroscopy, and the MWCNT-coated GOD nanocomposites were examined by atomic force microscopy (AFM) and transmission electron microscopy (TEM). Interestingly, it was found that the GOD–MWCNT composites are highly water soluble. Electrochemical characterization of the GOD–MWCNT composites that were modified on a glassy carbon electrode shows that the covalently linked GOD retains its bioactivity and can specifically catalyze the oxidation of glucose. The oxidation current shows a linear dependence on the glucose concentration in the solution in the range of 0.5–40 mM with a detection limit of 30 μM and a detection sensitivity of 11.3 μA/mMcm2. The present method may provide a way to synthesize MWCNT related composites with other biomolecules and for the construction of enzymatic reaction-based biofuel cells and biosensors. Supported by grants from the National Natural Science Foundation of China (NSFC, No. 20125515; 90206037; 20375016) and the Natural Science Foundation of Jiangsu Province (Grant No. BK 2004210)  相似文献   
38.
The electrode reaction of Zn(II) at a DME in aqueous solutions of (NH4)2SO4 has been studied by d.c. and square-wave polarography at 25.0±0.1°C. The electrochemical kinetic parameters for the reaction are determined. The appearance of the second wave in the square-wave polarogram has been attributed to the low values of the rate parameter and the transfer coefficient.  相似文献   
39.
This study describes a new methodology by which the concentrations of non-protein (NP) thiols glutathione (GSH), cysteine (CSH), N-acetylcysteine (AcCSH), and protein (P) thiols (PSH), as well as the contribution of these components to symmetric and mixed disulfides (NPSSR, NPSSC, NPSSCAc, PSSR, PSSC, PSSCAc, PSSP) can reliably be measured. The methodology consists of a strict sequence of methods which are applied to every sample. Free thiols at any given state of the procedure are measured by Ellmans assay, the CSH fraction is measured by its unique response in the ninhydrin assay, AcCSH is selectively measured with ninhydrin after enzymatic deacylation, proteins are separated from non-protein thiols/disulfides by precipitation with trichloroacetic or perchloric acid, disulfides are reduced into free thiols with borohydride, mixed disulfides between a protein and a non-protein component are measured by extracting the non-protein thiol from the protein pellet after borohydride treatment, and protein thiols/disulfides are measured after resolubilization of the protein pellet.When this method was applied to animal and fungal tissue, new molecular indicators of the thiol redox state of living cells were identified. The findings of the present study clearly show that the new parameters are very sensitive indicators of redox state, while at the same time the traditional parameters GSH and GSSG often remain constant even upon dramatic changes in the overall redox state of biological tissue. Therefore, unbiased assessment of the redox state also requires explicit measurement of its most sensitive thiol indicators.Electronic Supplementary Material Supplementary material is available in the online version of this article at . A link in the frame on the left on that page takes you directly to the supplementary material.  相似文献   
40.
The photocurrent and photopotential for undoped polycrystalline diamond film electrodes prepared by chemical vapor deposition and annealed in vacuum at 1500–1640°C are measured. The metal-like samples (annealed at 1630°C) have a negligible photosensitivity. Judging from the positive sign of the photopotential and the cathodic direction of the photocurrent, the material under study formally behaves as a p-type semiconductor. The photoeffects are presumably caused by structure defects, in particular, the dislocations in diamond crystallites formed close to intercrystalline boundaries during the high-temperature annealing.Translated from Elektrokhimiya, Vol. 41, No. 3, 2005, pp. 343–349.Original Russian Text Copyright © 2005 by Pleskov, Krotova, Ralchenko, Khomich, Khmelnitskii.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号