首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   57篇
  免费   0篇
化学   23篇
数学   1篇
物理学   33篇
  2020年   1篇
  2013年   1篇
  2012年   1篇
  2011年   6篇
  2008年   8篇
  2007年   5篇
  2006年   4篇
  2005年   2篇
  2004年   3篇
  2002年   3篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1997年   2篇
  1995年   2篇
  1994年   1篇
  1993年   2篇
  1991年   2篇
  1989年   1篇
  1988年   2篇
  1986年   2篇
  1985年   1篇
  1983年   2篇
  1981年   1篇
  1980年   1篇
  1978年   1篇
排序方式: 共有57条查询结果,搜索用时 15 毫秒
31.
Ab initio molecular orbital calculations have been carried out for the neutrals X? NH2, X? OH, and X? F and the anions X? NH? and X? O? with substituents X = Li, BeH, BH2, CH3, NH2, OH, and F. All structures have been fully optimized with the 4-31G basis set which is found to perform considerably better than the minimal STO-3G basis in predicting the lengths of strongly polar bonds. A quantitative analysis of interactions between the directly bonded groups, utilizing energy changes in hydrogenation reactions, is presented and rationalized with the aid of perturbation molecular orbital theory. Favorable interactions occur when electron-donor groups bond to electron-acceptor groups. This applies to both σ and π interactions, the relative importance of which depends on the particular substituents.  相似文献   
32.
The enthalpies of formation and bond dissociation energies, D(ROO-H), D(RO-OH), D(RO-O), D(R-O 2) and D(R-OOH) of alkyl hydroperoxides, ROOH, alkyl peroxy, RO, and alkoxide radicals, RO, have been computed at CBS-QB3 and APNO levels of theory via isodesmic and atomization procedures for R = methyl, ethyl, n-propyl and isopropyl and n-butyl, tert-butyl, isobutyl and sec-butyl. We show that D(ROO-H) approximately 357, D(RO-OH) approximately 190 and D(RO-O) approximately 263 kJ mol (-1) for all R, whereas both D(R-OO) and D(R-OOH) strengthen with increasing methyl substitution at the alpha-carbon but remain constant with increasing carbon chain length. We recommend a new set of group additivity contributions for the estimation of enthalpies of formation and bond energies.  相似文献   
33.
Fission and evaporation residue excitation functions have been measured after the nuclei 192, 195, 198, 200Pb were formed by the fusion of 28, 30Si with 164, 167, 170Er. The fission probabilities extracted were fitted using the rotating liquid drop/statistical model codes ORNL ALICE and MBII. The range of values of the mass asymmetry, (N?Z)A, of the fissioning systems allows some restrictions to be placed on the value of the surface asymmetry parameter Ks, used in the liquid drop model, despite the many uncertainties and approximations in the data analysis.  相似文献   
34.
35.
36.
Signal enhancement observed in surface‐enhanced Raman spectroscopy (SERS) is attributable to the presence of noble‐metal nanostructures on substrate surfaces. The rational development of SERS‐active substrates depends critically on the homogeneity and intensity of surface plasmon resonances, properties that are strongly dependent on both the morphology and dielectric properties of the metals and composite materials making up the SERS substrates. Enhancement can be controlled by the shape, size, and spacing of metallic nanoparticles. Previous studies in our group have shown that arrays of elliptical nanodiscs have promising geometries for this purpose. Using electron beam lithography (EBL), we fabricate close‐packed arrays of these discs with lateral dimensions ranging from 300:50 to 300:300 nm (long axis : short axis). The arrays are composed of a negative photoresist that, once the lithography process is complete, are coated with a noble metal through physical vapor deposition (PVD). In this work, optimum thickness and deposition rate of noble metal are determined for these substrates. The lithographically produced nanopatterns are studied by Raman spectroscopy to examine the effect of altering the elliptical aspect ratio on SERS activity, while scanning electron microscopy (SEM) is used to examine pattern surfaces post lithographic development and post noble‐metal deposition. Atomic force microscopy (AFM) is used to inspect the roughness of substrate surfaces. Reproducibility between different arrays of the same pattern ranges from 12 to 28%. Homogeneity of our uniform‐morphology EBL/PVD‐fabricated substrates is examined and compared to our random‐morphology polymer nanocomposite substrates. Using rhodamine 6G as an analyte, an increase in SERS signal is noted as the aspect ratio of ellipses goes from 6:1 to 6:6. Our experimental data, in terms of trends in SERS activity, correlate with trends in field enhancements calculated using a simple electrostatic model and with the magnitude of the broad red‐shifted spectral continuum observed for the substrates. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
37.
Noncovalent interactions are quite important in biological structure-function relationships. To study the pairwise interaction of aromatic amino acids (phenylalanine, tyrosine, tryptophan) with anionic amino acids (aspartic and glutamic acids), small molecule mimics (benzene, phenol or indole interacting with formate) were used at the MP2 level of theory. The overall energy associated with an anion-quadrupole interaction is substantial (-9.5 kcal/mol for a benzene-formate planar dimer at van der Waals contact distance), indicating the electropositive ring edge of an aromatic group can interact with an anion. Deconvolution of the long-range coplanar interaction energy into fractional contributions from charge-quadrupole interactions, higher-order electrostatic interactions, and polarization terms was achieved. The charge-quadrupole term contributes between 30 to 45% of the total MP2 benzene-formate interaction; most of the rest of the interaction arises from polarization contributions. Additional studies of the Protein Data Bank (PDB Select) show that nearly planar aromatic-anionic amino acid pairs occur more often than expected from a random angular distribution, while axial aromatic-anionic pairs occur less often than expected; this demonstrates the biological relevance of the anion-quadrupole interaction. While water may mitigate the strength of these interactions, they may be numerous in a typical protein structure, so their cumulative effect could be substantial.  相似文献   
38.
The collisional removal of vibrationally excited OH radicals by O atoms is studied by the quasiclassical trajectory method. To evaluate the effect of different topological features on the scattering processes two different global potential energy surfaces, DMBE IV and TU, are used. Results for reactive, exchange, and inelastic scattering probabilities are reported for central collisions (with zero total angular momentum) with a fixed relative translational energy for vibrational levels of OH ranging from nu=1 to v=8. Vibrational state distributions of product molecules are also compared on the two potential energy surfaces. Both surfaces predict higher probabilities for reaction than for exchange or inelastic scattering. The vibrational state distributions of the product diatomic molecules are different on the two surfaces. In particular, the two surfaces give substantially different probabilities for multiquantum OH vibrational relaxation transitions OH(v)+O-->OH(v')+O.  相似文献   
39.
We employ ab initio calculations of van der Waals complexes to study the potential energy parameters (C(6) coefficients) of van der Waals interactions for modeling of the adsorption of silver clusters on the graphite surface. Electronic structure calculations of the (Ag(2))(2), Ag(2)-H(2), and Ag(2)-C(6)H(6) complexes are performed using a coupled-cluster approach that includes single, double, and perturbative triple excitations (CCSD(T)), M?ller-Plesset second-order perturbation theory (MP2), and spin-component-scaled MP2 (SCS-MP2) methods. Using the atom pair approximation, the C(6) coefficients for silver-silver, silver-hydrogen, and silver-carbon atom systems are obtained after subtracting the energies of quadrupole-quadrupole interactions from the total electronic energy.  相似文献   
40.
We present a full dimensional quantum mechanical treatment of collisions between two H(2) molecules over a wide range of energies. Elastic and state-to-state inelastic cross sections for ortho-H(2)?+ para-H(2) and ortho-H(2)?+ ortho-H(2) collisions have been computed for different initial rovibrational levels of the molecules. For rovibrationally excited molecules, it has been found that state-to-state transitions are highly specific. Inelastic collisions that conserve the total rotational angular momentum of the diatoms and that involve small changes in the internal energy are found to be highly efficient. The effectiveness of these quasiresonant processes increases with decreasing collision energy and they become highly state-selective at ultracold temperatures. They are found to be more dominant for rotational energy exchange than for vibrational transitions. For non-reactive collisions between ortho- and para-H(2) molecules for which rotational energy exchange is forbidden, the quasiresonant mechanism involves a purely vibrational energy transfer albeit with less efficiency. When inelastic collisions are dominated by a quasiresonant transition calculations using a reduced basis set involving only the quasiresonant channels yield nearly identical results as the full basis set calculation leading to dramatic savings in computational cost.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号