首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   126632篇
  免费   1558篇
  国内免费   472篇
化学   69633篇
晶体学   2059篇
力学   5038篇
综合类   5篇
数学   12331篇
物理学   39596篇
  2016年   1300篇
  2015年   1001篇
  2014年   1349篇
  2013年   4856篇
  2012年   3452篇
  2011年   4488篇
  2010年   2775篇
  2009年   2557篇
  2008年   4023篇
  2007年   4068篇
  2006年   4115篇
  2005年   4042篇
  2004年   3521篇
  2003年   3211篇
  2002年   3107篇
  2001年   3617篇
  2000年   2739篇
  1999年   2235篇
  1998年   1912篇
  1997年   1895篇
  1996年   1840篇
  1995年   1803篇
  1994年   1576篇
  1993年   1557篇
  1992年   1783篇
  1991年   1769篇
  1990年   1708篇
  1989年   1709篇
  1988年   1708篇
  1987年   1685篇
  1986年   1601篇
  1985年   2167篇
  1984年   2286篇
  1983年   1909篇
  1982年   2231篇
  1981年   2040篇
  1980年   2087篇
  1979年   2076篇
  1978年   2209篇
  1977年   2116篇
  1976年   2130篇
  1975年   2064篇
  1974年   1908篇
  1973年   2117篇
  1972年   1295篇
  1971年   980篇
  1970年   920篇
  1969年   926篇
  1968年   1056篇
  1967年   1107篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
981.
The excitation and emission properties of several psoralen derivatives are compared using conventional single-photon excitation and simultaneous two-photon excitation (TPE). Two-photon excitation is effected using the output of a mode-locked titanium: sapphire laser, the near infrared output of which is used to promote non-resonant TPE directly. Specifically, the excitation spectra and excited-state properties of 8-methoxypsoralen and 4′-aminomethyl-4,5,8-trimethylpsoralen are shown to be equivalent using both modes of excitation. Further, in vitro feasibility of two-photon photodynamic therapy (PDT) is demonstrated using Salmonella typhimurium. Two-photon excitation may be beneficial in the practice of PDT because it would allow replacement of visible or UV excitation light with highly penetrating, nondamag-ing near infrared light and could provide a means for improving localization of therapy. Comparison of possible laser excitation sources for PDT reveals the titanium: sapphire laser to be exceptionally well suited for nonlinear excitation of PDT agents in biological systems due to its extremely short pulse width and high repetition rate that together provide efficient PDT activation and greatly reduced potential for biological damage  相似文献   
982.
The current laboratory practices of organic synthesis are labor intensive, impose safety and environmental hazards, and hamper the implementation of artificial intelligence guided drug discovery. Using a combination of reagent design, hardware engineering, and a simple operating system we provide an instrument capable of executing complex organic reactions with prepacked capsules. The machine conducts coupling reactions and delivers the purified products with minimal user involvement. Two desirable reaction classes – the synthesis of saturated N-heterocycles and reductive amination – were implemented, along with multi-step sequences that provide drug-like organic molecules in a fully automated manner. We envision that this system will serve as a console for developers to provide synthetic methods as integrated, user-friendly packages for conducting organic synthesis in a safe and convenient fashion.

Using a combination of reagent design, hardware engineering, and a simple operating system we provide an instrument capable of executing complex organic reactions using prepacked capsules with minimal user involvement.  相似文献   
983.
Reversible addition–fragmentation chain transfer (RAFT) dispersion polymerisation of methyl methacrylate (MMA) is performed in supercritical carbon dioxide (scCO2) with 2-(dodecylthiocarbonothioylthio)-2-methylpropionic acid (DDMAT) present as chain transfer agent (CTA) and surprisingly shows good control over PMMA molecular weight. Kinetic studies of the polymerisation in scCO2 also confirm these data. By contrast, only poor control of MMA polymerisation is obtained in toluene solution, as would be expected for this CTA which is better suited for acrylates. In this regard, we select a range of CTAs and use them to determine the parameters that must be considered for good control in dispersion polymerisation in scCO2. A thorough investigation of the nucleation stage during the dispersion polymerisation reveals an unexpected “in situ two-stage” mechanism that strongly determines how the CTA works. Finally, using a novel computational solvation model, we identify a correlation between polymerisation control and degree of solubility of the CTAs. All of this ultimately gives rise to a simple, elegant and counterintuitive guideline to select the best CTA for RAFT dispersion polymerisation in scCO2.

RAFT dispersion polymerisation of methyl methacrylate is performed in scCO2 with 2-(dodecylthiocarbonothioylthio)-2-methylpropionic acid (DDMAT) present as chain transfer agent (CTA) and surprisingly shows good control over PMMA molecular weight.  相似文献   
984.
We have found that the presence of <1 wt% of the globular protein alpha-lactalbumin has a significant impact on the equilibrium phase behavior of dilute sodium bis(ethylhexyl) sulfosuccinate (AOT)/brine/isooctane systems. Nuclear magnetic resonance (NMR), Karl Fischer titration, and ultraviolet spectroscopy were used to determine the surfactant, oil, water, and protein content of the organic and aqueous phases as a function of the total surfactant and protein present. As a small amount of alpha-lactalbumin is added to the mixture, there is a substantial increase (up to 80%) in the maximum water solubility in the water-in-oil microemulsion phase. Dynamic light scattering measurements indicate that this increase is due to a decrease in the magnitude of the (negative) spontaneous curvature of the surfactant monolayer, as droplets swell in size. As the molar ratio of alpha-lactalbumin to AOT surpasses approximately 1:300, the partitioning of water, protein, and surfactant shifts to the excess aqueous phase, where soluble assemblies with positive curvature are detected by dynamic light scattering. Significant amounts of isooctane are solubilized in these aggregates, consistent with the formation of oil-in-water microemulsion droplets. Circular dichroism studies showed that the tertiary structure of the protein in the microemulsion is disrupted while the secondary structure is increased. In light of these findings, the protein most likely expands to a molten-globule type conformation in the AOT interfacial environment, but does not substantially unfold to become an extended chain.  相似文献   
985.
We present a systematic study of numerical accuracy of various forms of molecular caps that are employed in a recently developed molecular fractionation scheme for full quantum mechanical computation of protein-molecule interaction energy. A previously studied pentapeptide (Gly-Ser-Ala-Asp-Val) or P5 interacting with a water molecule is used as a benchmark system for numerical testing. One-dimensional potential energy curves are generated for a number of peptide-water interaction pathways. Our study shows that various forms of caps all give consistently accurate energies compared to the corresponding full system calculation with only small deviations. We also tested the accuracy of cutting peptide backbone at different positions and comparisons of results are presented.  相似文献   
986.
About 60 molecular species composed of up to 10 mercury atoms and of oxygen atoms and/or of some other elements or groups (such as halogen, OH2, OH, H, alkali, NO3) have been investigated quantum chemically. Different density functional approaches and the ab initio SCF‐MP2 method were applied, comparing different basis sets and different atomic core sizes. It is important not to treat the Hg 5s, p, d as inactive core shells, and to use sufficiently many polarization functions. The shape of the 〉O‐Hg‐Hg‐O〈 units is not favorable concerning the formation of lattices composed of HgI, O and OH only. Despite its bulkiness, the OHgHgO units can easily come into contact with each other and then disproportionate. This is prevented in the so‐called ternary M‐HgI oxides by the embedded oxometallate (oxoacidic) anions. Furthermore, the HgI and HgII oxide bond energies are less favorable towards the stability of HgI oxo compounds, as compared to Hg halidic or oxoacidic compounds. Both points are not promising concerning the search for HgI oxides/hydroxides, although the preparation of such compounds, including spacer groups, by topochemical reactions can still not be excluded. So far, experimental efforts towards the synthesis of such a new class of compounds have only demonstrated that HgII is strictly preferred over HgI in the formation of solids of binary Hg‐O or ternary A‐Hg‐O composition (A = electropositive metal such as alkali, in contrast to M = transition or semi‐metal). This is so even if compounds containing ‘electron rich Hgδ— atoms’ (i.e. A‐Hg amalgams) are oxidized under mild conditions.  相似文献   
987.
We studied temperature dependence of complex capacitance, impedance, and polarized Raman spectra of single crystal Cs2Nb4O11. First, we observed a sharp lambda-shaped peak at 165 degrees C in the complex capacitance, then found drastic changes in the Raman spectra in the same temperature range. Utilizing the pseudosymmetry search of structure space group, we attributed the observed anomalies to a structural change from the room temperature orthorhombic Pnn2 to another orthorhombic Imm2. We also measured room temperature polarized Raman spectra in different symmetries of normal vibrations and assigned high wavenumber Raman bands to the internal vibrations of NbO6 octahedra and NbO4 tetrahedra.  相似文献   
988.
A literature survey on the kinetics of hydride abstractions from CH-groups by carbocations reveals a general phenomenon: Variation of the hydride acceptor affects the rates of hydride transfer to a considerably greater extent than an equal change of the thermodynamic driving force caused by variation of the hydride donor. The origin of this relationship was investigated by quantum chemical calculations on various levels of ab initio and DFT theory for the transfer of an allylic hydrogen from 1-mono- and 1,1-disubstituted propenes (XYC=CH-CH(3)) to the 3-position of 1-mono- and 1,1-disubstituted allyl cations (XYC=CH-CH(2)(+)). The discussion is based on the results of the MP2/6-31+G(d,p)//RHF/6-31+G(d,p) calculations. Electron-releasing substituents X and Y in the hydride donors increase the exothermicity of the reaction, while electron-releasing substituents in the hydride acceptors decrease exothermicity. In line with Hammond's postulate, increasing exothermicity shifts the transition states on the reaction coordinate toward reactants, as revealed by the geometry parameters and the charge distribution in the activated complexes. Independent of the location of the transition state on the reaction coordinate, a value of 0.72 is found for Hammond-Leffler's alpha = deltaDeltaG/deltaDelta(r)G degrees when the hydride acceptor is varied, while alpha = 0.28 when the hydride donor is varied. The value of alpha thus cannot be related with the position of the transition state. Investigation of the degenerate reactions XYC=CH-CH(3) + XYC=CH-CH(2)(+) indicates that the migrating hydrogen carries a partial positive charge in the transition state and that the intrinsic barriers increase with increasing electron-releasing abilities of X and Y. Substituent variation in the donor thus influences reaction enthalpy and intrinsic barriers in the opposite sense, while substituent variation in the acceptor affects both terms in the same sense, in accord with the experimental findings. Marcus theory is employed to treat these effects quantitatively.  相似文献   
989.
Two unique conformational polymorphic forms of the compound 6‐[4‐(1‐cyclo­hexyl‐1H‐tetrazol‐5‐yl)­butoxy]‐3,4‐di­hydro­quinolin‐2(1H)‐one (cilostazol), C20H27N5O2, have been discovered and characterized using single‐crystal X‐ray structural analysis. A third polymorph also exists, but acceptable crystals could not be obtained. Features of both reported polymorphic structures include a chair conformation of the cyclo­hexyl ring and puckering in the quinolinone ring. The major feature distinguishing the two polymorphic forms is a rotational twisting of the butoxy chain between the tetrazole and quinolinone rings. This difference in conformation influences the intermolecular forces, and hence the packing of the two mol­ecules during crystallization.  相似文献   
990.
Spark source mass spectrometry (SSMS) has experienced important and significant improvements in nearly all analytical features by the use of a multiple ion counting (MIC) system. Two procedures have recently been developed to further increase the analytical capabilities of MIC-SSMS in geochemistry. These are a mathematical correction of interferences, which is often necessary for the ultra trace element analysis of Nb, Ta, Zr, Hf and Y, and the development of an autospark system to hold the total ion beam constant. New analytical data for geological samples, especially international reference materials, are presented using the improved MIC-SSMS technique. The data set consists of high precision and low abundance data for Zr, Nb and Y in depleted reference materials. The MIC-SSMS results are compared with those of conventional SSMS using photoplates for ion detection. The precision of the MIC-SSMS isotope ratio measurements (about 1%) is more than a factor of 3 better than that of conventional SSMS, as demonstrated by analyses of Hawaiian samples. Total uncertainties of MIC-SSMS concentration data including all sources of error are generally between 2 and 5% for concentrations higher than about 0.3 microg/g and about 10% for trace element abundances in the ng/g range.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号