首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   344篇
  免费   0篇
化学   188篇
晶体学   3篇
力学   7篇
数学   59篇
物理学   87篇
  2023年   4篇
  2020年   11篇
  2019年   7篇
  2017年   3篇
  2014年   3篇
  2013年   16篇
  2012年   17篇
  2011年   18篇
  2010年   6篇
  2009年   3篇
  2008年   10篇
  2007年   11篇
  2006年   15篇
  2005年   12篇
  2004年   10篇
  2003年   7篇
  2002年   7篇
  2001年   8篇
  2000年   11篇
  1999年   6篇
  1998年   4篇
  1997年   3篇
  1996年   9篇
  1995年   7篇
  1994年   6篇
  1993年   7篇
  1992年   4篇
  1991年   2篇
  1990年   7篇
  1989年   5篇
  1988年   10篇
  1987年   10篇
  1986年   5篇
  1985年   6篇
  1984年   6篇
  1982年   3篇
  1981年   4篇
  1980年   2篇
  1979年   2篇
  1978年   2篇
  1977年   5篇
  1976年   2篇
  1975年   4篇
  1973年   2篇
  1972年   5篇
  1971年   10篇
  1970年   8篇
  1969年   2篇
  1968年   2篇
  1936年   2篇
排序方式: 共有344条查询结果,搜索用时 31 毫秒
41.
42.
The application of single-molecule spectroscopic methods in studies of individual nanoscale environments within sol-gel-derived silicate thin films is reviewed. Representative examples of the experiments performed and results obtained in several studies from the authors' laboratories are given. Included are investigations of the static and dynamic polarity properties of organically modified silicate (ORMOSIL) films. The results of these studies point to nonrandom variations in the film properties, providing strong evidence for the formation of phase-separated organic- and inorganic-rich domains. Studies of single-molecule diffusion through the same films yield important evidence for the formation of liquidlike silicate oligomers that facilitate probe molecule diffusion. Finally, single-molecule studies of the local pH within individual film environments are discussed. Valuable information on the contributions of local materials' acidity variations to overall sample heterogeneity is obtained. The results of immersion studies indicate that certain molecular environments are inaccessible to external solutions over periods as long as a few hours. The article concludes with a discussion of possible future challenges in this research that may be addressed by new and existing single-molecule methods.  相似文献   
43.

Background  

Microglia provide continuous immune surveillance of the CNS and upon activation rapidly change phenotype to express receptors that respond to chemoattractants during CNS damage or infection. These activated microglia undergo directed migration towards affected tissue. Importantly, the molecular species of chemoattractant encountered determines if microglia respond with pro- or anti-inflammatory behaviour, yet the signaling molecules that trigger migration remain poorly understood. The endogenous cannabinoid system regulates microglial migration via CB2 receptors and an as yet unidentified GPCR termed the 'abnormal cannabidiol' (Abn-CBD) receptor. Abn-CBD is a synthetic isomer of the phytocannabinoid cannabidiol (CBD) and is inactive at CB1 or CB2 receptors, but functions as a selective agonist at this Gi/o-coupled GPCR. N-arachidonoyl glycine (NAGly) is an endogenous metabolite of the endocannabinoid anandamide and acts as an efficacious agonist at GPR18. Here, we investigate the relationship between NAGly, Abn-CBD, the unidentified 'Abn-CBD' receptor, GPR18, and BV-2 microglial migration.  相似文献   
44.
Single molecule spectroscopy is applied in studies of diffusion and surface adsorption in sol-gel-derived mesoporous silica thin films. Mesoporous films are obtained by spin casting surfactant-templated sols onto glass substrates. Small-angle X-ray diffraction results are consistent with hexagonally ordered mesophases in as-synthesized (i.e., surfactant-containing) films. Upon calcination, a 30% contraction and disordering of these structures occurs. Nile Red is used as a fluorescent probe of both the as-synthesized and calcined films. It is loaded into the samples at subnanomolar levels either prior to spin casting or after calcination. Fluorescence imaging and single-point fluorescence time transients show the dye molecules to be relatively mobile in the as-synthesized samples. In contrast, the molecules appear entrapped at fixed locations in dry calcined films. In calcined films rehydrated under high humidity conditions, the Nile Red molecules again become mobile. Time transients obtained from the as-synthesized and rehydrated samples provide clear evidence for frequent reversible adsorption of the dye to the silica surfaces. Autocorrelations of the time transients provide quantitative data on the mean diffusion coefficients (D = 2.4 x 10(-10) and 2.6 x 10(-10) cm2/s) and mean desorption times (1/k = 25 and 40 s) for the as-synthesized and rehydrated films, respectively. The results prove both water and surfactant play important roles in governing matrix interactions and mass transport.  相似文献   
45.
In this paper, we present distribution-free tests to evaluate the effect of multiple treatments when there are a large number of repeated measurements from each subject nested in a treatment. We formulate new test statistics to account for heteroscedasticity and unbalanced designs. The asymptotic distributions for the test statistics are obtained when the repeated measurements from the same subject have long range dependence and weak dependence, respectively. The asymptotic results hold under the nonclassical setting in which the number of repeated measurements is large while the number of subjects per treatment may be small. A real application to compare cattle ear temperature profiles under different antibiotic treatments is given for illustration. Simulation studies are undertaken to compare the empirical performance of the proposed tests to commonly used methods.  相似文献   
46.
Polyoxometalates have been proposed in the literature as nanoelectronic components, where they could offer key advantages with their structural versatility and rich electrochemistry. Apart from a few studies on their ensemble behaviour (as monolayers or thin films), this potential remains largely unexplored. We synthesised a pyridyl-capped Anderson–Evans polyoxometalate and used it to fabricate single-molecule junctions, using the organic termini to chemically “solder” a single cluster to two nanoelectrodes. Operating the device in an electrochemical environment allowed us to probe charge transport through different oxidation states of the polyoxometalate, and we report here an efficient three-state transistor behaviour. Conductance data fits a quantum tunnelling mechanism with different charge-transport probabilities through different charge states. Our results show the promise of polyoxometalates in nanoelectronics and give an insight on their single-entity electrochemical behaviour.  相似文献   
47.
The critical dimension necessary for a flame to propagate in suspensions of fuel particles in oxidiser is studied analytically and numerically. Two types of models are considered: First, a continuum model, wherein the individual particulate sources are not resolved and the heat release is assumed spatially uniform, is solved via conventional finite difference techniques. Second, a discrete source model, wherein the heat diffusion from individual sources is modelled via superposition of the Green's function of each source, is employed to examine the influence of the random, discrete nature of the media. Heat transfer to cold, isothermal walls and to a layer of inert gas surrounding the reactive medium are considered as the loss mechanisms. Both cylindrical and rectangular (slab) geometries of the reactive medium are considered, and the flame speed is measured as a function of the diameter and thickness of the domains, respectively. In the continuum model with inert gas confinement, a universal scaling of critical diameter to critical thickness near 2:1 is found. In the discrete source model, as the time scale of heat release of the sources is made small compared to the interparticle diffusion time, the geometric scaling between cylinders and slabs exhibits values greater than 2:1. The ability of the flame in the discrete regime to propagate in thinner slabs than predicted by continuum scaling is attributed to the flame being able to exploit local fluctuations in concentration across the slab to sustain propagation. As the heat release time of the sources is increased, the discrete source model reverts back to results consistent with the continuum model. Implications of these results for experiments are discussed.  相似文献   
48.

Fluorescence correlation spectroscopy (FCS) has been widely used to investigate molecular diffusion behavior in various samples. The use of the maximum entropy method (MEM) for FCS data analysis provides a unique means to determine multiple distinct diffusion coefficients without a priori assumption of their number. Comparison of the MEM-based FCS method (MEM-FCS) with another method will reveal its utility and advantage as an analytical tool to investigate diffusion dynamics. Herein, we measured diffusion of fluorescent probes doped into nanostructured thin films using MEM-FCS, and validated the results with single molecule tracking (SMT) data. The efficacy of the MEM code employed was first demonstrated by analyzing simulated FCS data for systems incorporating one and two diffusion modes with broadly distributed diffusion coefficients. The MEM analysis accurately afforded the number of distinct diffusion modes and their mean diffusion coefficients. These results contrasted with those obtained by fitting the simulated data to conventional two-component and anomalous diffusion models, which yielded inaccurate estimates of the diffusion coefficients. Subsequently, the MEM analysis was applied to FCS data acquired from hydrophilic dye molecules incorporated into microphase-separated polystyrene-block-poly(ethylene oxide) (PS-b-PEO) thin films characterized under a water-saturated N2 atmosphere. The MEM analysis revealed distinct fast and slow diffusion components attributable to molecules diffusing on the film surface and inside the film, respectively. SMT studies of the same materials yielded trajectories for mobile molecules that appear to follow the curved PEO microdomains. Diffusion coefficients obtained from the SMT data were consistent with those obtained for the slow diffusion component detected by MEM-FCS. These results highlight the utility of MEM-FCS and SMT for gaining complementary information on molecular diffusion processes in heterogeneous material systems.

Graphical Abstract
  相似文献   
49.
Non-canonical amino acids (ncAAs) are useful synthons for the development of new medicines, materials, and probes for bioactivity. Recently, enzyme engineering has been leveraged to produce a suite of highly active enzymes for the synthesis of β-substituted amino acids. However, there are few examples of biocatalytic N-substitution reactions to make α,β-diamino acids. In this study, we used directed evolution to engineer the β-subunit of tryptophan synthase, TrpB, for improved activity with diverse amine nucleophiles. Mechanistic analysis shows that high yields are hindered by product re-entry into the catalytic cycle and subsequent decomposition. Additional equivalents of l -serine can inhibit product reentry through kinetic competition, facilitating preparative scale synthesis. We show β-substitution with a dozen aryl amine nucleophiles, including demonstration on a gram scale. These transformations yield an underexplored class of amino acids that can serve as unique building blocks for chemical biology and medicinal chemistry.  相似文献   
50.
The fabrication of arbitrary grayscale patterns in poly(ethylene dioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) thin films is demonstrated. Patterns are formed by ablative direct-write multiphoton lithography using a sample scanning microscope and 870-nm light from a mode-locked Ti:sapphire laser. The surface profiles of all etched samples are characterized by atomic force microscopy. Grayscale patterns are produced by modulating the laser focus during etching. Quantitative models describing the etch depth as a function of laser power and focus are presented and employed to reproducibly control film patterning. PEDOT:PSS is found to be etched by a combination of linear and nonlinear optical processes. Sensitization by PEDOT in the composite is concluded to facilitiate removal of PSS. An ultimate etch depth precision of 1 nm is achieved.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号