首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   421篇
  免费   16篇
  国内免费   3篇
化学   298篇
晶体学   18篇
力学   2篇
数学   39篇
物理学   83篇
  2023年   5篇
  2021年   6篇
  2020年   9篇
  2019年   7篇
  2018年   2篇
  2016年   13篇
  2015年   10篇
  2014年   12篇
  2013年   20篇
  2012年   21篇
  2011年   30篇
  2010年   17篇
  2009年   24篇
  2008年   23篇
  2007年   23篇
  2006年   21篇
  2005年   16篇
  2004年   24篇
  2003年   15篇
  2002年   11篇
  2001年   11篇
  2000年   12篇
  1999年   13篇
  1998年   7篇
  1997年   5篇
  1996年   11篇
  1995年   10篇
  1994年   7篇
  1993年   5篇
  1992年   3篇
  1991年   1篇
  1990年   4篇
  1989年   2篇
  1987年   1篇
  1986年   1篇
  1985年   3篇
  1984年   4篇
  1983年   3篇
  1982年   5篇
  1981年   1篇
  1980年   6篇
  1979年   3篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1975年   4篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1968年   1篇
排序方式: 共有440条查询结果,搜索用时 15 毫秒
31.
A simple and highly efficient transfer hydrogenation of alkynes and alkenes by using a two-dimensional electride, dicalcium nitride ([Ca2N]+·e), as an electron transfer agent is disclosed. Excellent yields in the transformation are attributed to the remarkable electron transfer efficiency in the electride-mediated reactions. It is clarified that an effective discharge of electrons from the [Ca2N]+·e electride in alcoholic solvents is achieved by the decomposition of the electride via alcoholysis and the generation of ammonia and Ca(OiPr)2. We found that the choice of solvent was crucial for enhancing the electron transfer efficiency, and a maximum efficiency of 80% was achieved by using a DMF mixed isopropanol co-solvent system. This is the highest value reported to date among single electron transfer agents in the reduction of C–C multiple bonds. The observed reactivity and efficiency establish that electrides with a high density of anionic electrons can readily participate in the reduction of organic functional groups.  相似文献   
32.
Using a high pressure technique and the strong donating nature of H, a new series of tetragonal La2Fe2Se2O3‐type layered mixed‐anion arsenides, Ln2M2As2Hx, was synthesized (Ln=La or Sm, M=Ti, V, Cr, or Mn; x≈3). In these compounds, an unusual M2H square net, which has anti CuO2 square net structures accompanying two As3− ions, is sandwiched by (LaH)2 fluorite layers. Notably, strong metal–metal bonding with a distance of 2.80 Å was confirmed in La2Ti2As2H2.3, which has metallic properties. In fact, these compounds are situated near the boundary between salt‐like ionic hydrides and transition‐metal hydrides with metallic characters.  相似文献   
33.
Pyrimidine base pairs in DNA duplexes selectively capture metal ions to form metal ion-mediated base pairs, which can be evaluated by thermal denaturation, isothermal titration calorimetry, and nuclear magnetic resonance spectroscopy. In this critical review, we discuss the metal ion binding of pyrimidine bases (thymine, cytosine, 4-thiothymine, 2-thiothymine, 5-fluorouracil) in DNA duplexes. Thymine-thymine (T-T) and cytosine-cytosine (C-C) base pairs selectively capture Hg(II) and Ag(I) ions, respectively, and the metallo-base pairs, T-Hg(II)-T and C-Ag(I)-C, are formed in DNA duplexes. The metal ion binding properties of the pyrimidine-pyrimidine pairs can be changed by small chemical modifications. The binding selectivity of a metal ion to a 5-fluorouracil-5-fluorouracil pair in a DNA duplex can be switched by changing the pH of the solution. Two silver ions bind to each thiopyrimidine-thiopyrimidine pair in the duplexes, and the duplexes are largely stabilized. Oligonucleotides containing these bases are commercially available and can readily be applied in many scientific fields (86 references).  相似文献   
34.
The nature of water interaction with tungsten nanorods (WNRs) fabricated by the glancing-angle deposition technique (GLAD)-using RF magnetron sputtering under various Ar pressures and substrate tilting angles and then subsequent coating with Teflon-has been studied and reported. Such nanostructured surfaces have shown strong water repellency properties with apparent water contact angles (AWCA) of as high as 160°, which were found to depend strongly upon the fabrication conditions. Variations in Ar pressure and the substrate tilting angle resulted in the generation of WNRs with different surface roughness and porosity properties. A theoretical model has been proposed to predict the observed high AWCAs measured at the nanostructure interfaces. The unique pyramidal tip geometry of WNRs generated at low Ar pressure with a high oblique angle reduced the solid fraction at the water interface, explaining the high AWCA measured on such surfaces. It was also found that the top geometrical morphologies controlling the total solid fraction of the WNRs are dependent upon and controlled by both the Ar pressure and substrate tilting angle. The water repellency of the tungsten nanorods with contact angles as high as 160° suggests that these coatings have enormous potential for robust superhydrophobic and anti-icing applications in harsh environments.  相似文献   
35.
A quality assessment method for commercially available, optically active flavor compounds, namely, menthol, menthyl acetate, borneol, perillaldehyde, and 1,8-cineol, was developed. A gas chromatograph equipped with a flame ionization detector and a DB-5ms capillary column was used for the chemical purity test. A GC/MS with a beta-DEX cyclodextrin column was used for the optical purity test, by which the enantiomeric separation of each flavor compound was achieved. Enantiomeric excess was calculated as an expression of optical purity. Of the 25 standard samples subjected to the chemical purity test, six were found to have lower purity than the data provided by the manufacturers. When the same samples were subjected to the optical purity test, 11 were found to have lower purity than that indicated on the reagent labels. These results suggest that there is a need to conduct an optical purity test, in addition to a chemical purity test, for the quality assessment of flavor standards.  相似文献   
36.
Adhikari BB  Gurung M  Kawakita H  Ohto K 《The Analyst》2011,136(21):4570-4579
The solvent extraction behavior of multiple proton ionizable p-tert-butylcalix[4]arene and [6]arene carboxylic acid derivatives towards indium has been investigated along with an acyclic monomeric analogue from weakly acidic media into chloroform. The extraction mechanism is ion exchange and carboxylic acid groups are adequate ligating sites for extraction. The cyclic structure of calixarene ligands to accommodate the potential guest species and the cooperativity effect of multifunctional groups significantly affect the complexation behavior and calixarene derivatives are found to be excellent extractants over the monomeric analogue. The composition of the extracted complex depends on the solution pH and attempts to determine the composition of the extracted complex for the extraction of indium have been stymied by complications arising from the formation of polynuclear species of indium and bridged polymeric species of calixarene carboxylic acid derivatives. One mole of calix[4]arene derivative extracts 2.5 moles of indium whereas the calix[6]arene derivative tends to extract 4.0 moles of indium. The loaded indium is back extracted with 1 mol dm(-3) hydrochloric acid solution. Though quantitative back extraction of indium was achieved from the fully loaded calix[6]arene derivative, it was only achieved up to 85% in the case of the calix[4]arene derivative.  相似文献   
37.
We propose a modified mechanism for the inhibition of [NiFe]hydrogenase ([NiFe]H(2)ase) by CO. We present a model study, using a NiRu H(2)ase mimic, that demonstrates that (i) CO completely inhibits the catalytic cycle of the model compound, (ii) CO prefers to coordinate to the Ru(II) center rather than taking an axial position on the Ni(II) center, and (iii) CO is unable to displace a hydrido ligand from the NiRu center. We combine these studies with a reevaluation of previous studies to propose that, under normal circumstances, CO inhibits [NiFe]H(2)ase by complexing to the Fe(II) center.  相似文献   
38.
Understanding the effect of codoping on the properties of photonic glasses is important for improving their properties. The effect of codoping on the ligand field around Cu(2+) ions in a sodium borate glass is examined using optical absorption spectroscopy, continuous-wave electron paramagnetic resonance, and three-pulse electron-spin-echo envelope-modulation. Glass with a composition of 0.1CuO·5Na(2)O·95B(2)O(3) was codoped with 2 mol % of Al(3+), Si(4+), P(5+), Zr(4+), or La(3+) oxide. Three codoping effects are found: strengthening the ligand field, as observed for Zr-codoping, which induces a large blue shift of the optical absorption peak of Cu(2+); weakening the ligand field, as observed for P-codoping, which causes a red shift of the Cu(2+) absorption peak; and almost no effect on the ligand field, which is observed for Al-, Si-, and La-codoping. Coordination structure models based on local charge neutrality are proposed for the codoped glasses. The mechanism of the codoping effect is revealed by elucidating the local structure around Cu(2+).  相似文献   
39.
We found that La(2)Sb with a layered structure composed of alternate stacking of La square nets and LaSb layers exhibits bulk superconductivity with a critical temperature of 5.3 K. This suggests that the presence of the square net with strong La-La metal bonding is essential for the emergence of superconductivity.  相似文献   
40.
Hybrid nanocomposite films of ITO-coated, self-assembled porous nanostructures of tungsten trioxide (WO(3)) were fabricated using electrochemical anodization and sputtering. The morphology and chemical nature of the porous nanostructures were studied by Scanning Electron Microscopy (SEM) and X-ray Photoelectron Spectroscopy (XPS), respectively. The photoelectrochemical (PEC) properties of WO(3) porous nanostructures were studied in various alkaline electrolytes and compared with those of titania nanotubes. A new type of alkaline electrolyte containing a mixture of NaOH and KOH was proposed for the first time to the best of our knowledge and shown to improve the photocurrent response of the photoanodes. Here, we show that both the WO(3) nanostructures and titania nanotubes (used for comparison) exhibit superior photocurrent response in the mixture of NaOH and KOH than in other alkaline electrolytes. The WO(3) porous nanostructures suffered from surface corrosion resulting in a huge reduction in the photocurrent density as a function of time in the alkaline electrolytes. However, with a protective coating of ITO (100 nm), the surface corrosion of WO(3) porous nanostructures reduced drastically. A tremendous increase in the photocurrent density of as much as 340% was observed after the ITO was applied to the WO(3) porous nanostructures. The results suggest that the hybrid ITO/WO(3) nanocomposites could be potentially coupled with titania nanotubes in a multi-junction PEC cell to expand the light absorption capability in the solar spectrum for water splitting to generate hydrogen.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号