首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1563篇
  免费   50篇
  国内免费   2篇
化学   1316篇
晶体学   22篇
力学   10篇
数学   74篇
物理学   193篇
  2023年   12篇
  2022年   18篇
  2021年   26篇
  2020年   20篇
  2019年   25篇
  2018年   20篇
  2017年   17篇
  2016年   34篇
  2015年   25篇
  2014年   40篇
  2013年   85篇
  2012年   76篇
  2011年   104篇
  2010年   48篇
  2009年   49篇
  2008年   115篇
  2007年   116篇
  2006年   104篇
  2005年   141篇
  2004年   97篇
  2003年   66篇
  2002年   70篇
  2001年   22篇
  2000年   19篇
  1999年   10篇
  1998年   24篇
  1997年   15篇
  1996年   25篇
  1995年   11篇
  1994年   12篇
  1993年   7篇
  1992年   5篇
  1991年   7篇
  1989年   8篇
  1988年   5篇
  1987年   3篇
  1986年   6篇
  1985年   12篇
  1984年   14篇
  1983年   6篇
  1982年   20篇
  1981年   10篇
  1980年   17篇
  1979年   5篇
  1978年   11篇
  1977年   8篇
  1976年   5篇
  1975年   5篇
  1974年   6篇
  1973年   3篇
排序方式: 共有1615条查询结果,搜索用时 15 毫秒
81.
Experiments were carried out to investigate the removals of SO2 and NOx from simulated lignite-burning flue gas containing SO2 (4800 ppm), NO (320 ppm) and H2O (22%) by electron beam irradiation. Removal efficiencies of SO2 and NOx were achieved to reach 97 and 88% at 70°C, and 74 and 85% at 80°C, respectively, with the dose of 10.3 kGy without NH3 leakage. The higher removal efficiencies of SO2 and NOx were observed in simulated lignite-burning flue gas than in coal-fired flue gas containing 800 ppm of SO2, 225 ppm of NO and 7.5% H2O at the same treatment condition. The higher removal efficiencies were attributed to the higher concentrations of SO2, H2O, and added NH3. Simulation calculations indicated that the higher concentrations of these components enhance the effective radical reactions to oxidize NO to form NO2 with HO2 radical, and to oxidize SO2 to form SO3 with OH radical and O2. The reactions of NOx with N and NH2 radicals to produce N2 and N2O also promote the NOx removal. By-product was determined to be the mixture of (NH4)2SO4 and NH4NO3 containing a small amount of H2SO4.  相似文献   
82.
We found that Br-/Br3- is more suitable than an I-/I3- couple in dye-sensitized solar cells in terms of higher open-circuit photovoltage (Voc) production and higher overall energy conversion efficiency (eta) if the dye sensitizer has a more positive potential than that of Br-/Br3-. Under simulated AM1.5 one sun, an eosin Y dye-sensitized solar cell containing 0.4 M LiBr + 0.04 M Br2 electrolyte in acetonitrile yielded a short-circuit photocurrent (Jsc) of 4.63 mA cm(-2), Voc of 0.813 V, and fill factor (FF) of 0.693, corresponding to 2.61% of eta. Under the same conditions except for the electrolyte 0.4 M LiI + 0.04 M I2 in acetonitrile instead, the device produced 1.67% of eta (Jsc = 5.15 mA cm(-2), Voc = 0.451 V, FF = 0.721). Replacement of I-/I3- with Br-/Br3- in eosin Y dye-sensitized solar cells yielded a significant increase in Voc offset by slight decreases in Jsc and FF, leading to an increase in eta by 56%. The significant gain in Voc was attributed to the enlarged energy level difference between the redox potential of the electrolyte and the Fermi level of TiO2 and the suppressed charge recombination as well. The rate for charge recombination between bromine and the injected electrons was determined to be first order in bromine.  相似文献   
83.
Photophysical and (photo)electrochemical properties of a coumarin dye   总被引:2,自引:0,他引:2  
A new coumarin dye, cyano-{5,5-dimethyl-3-[2-(1,1,6,6-tetramethyl-10-oxo-2,3,5,6-tetrahydro-1H,4H,10H-11-oxa-3a-aza-benzo[de]anthracen-9-yl)vinyl]cyclohex-2-enylidene}-acetic acid (NKX-2753), was prepared and characterized with respect to photophysical and electrochemical properties. It was employed as a dye sensitizer in dye-sensitized solar cells and showed efficient photon-to-electron conversion properties. The photocurrent action spectrum exhibited a broad feature with a maximum incident photon-to-electron conversion efficiency (IPCE) of 84% at 540 nm, which is comparable to that for the famous red dye RuL2(NCS)2 (known as N3), where L stands for 2,2'-bipyridyl-4,4'-dicarboxylic acid. The sandwich-type solar cell with NKX-2753, under illumination of full sun (AM1.5, 100 mW cm(-2)), produced 16.1 mA cm(-2) of short-circuit photocurrent, 0.60 V of open-circuit photovoltage, and 0.69 of fill factor, corresponding to 6.7% of overall energy conversion efficiency using 0.1 M LiI, 0.05 M I2, 0.1 M guanidinium thiocyanate, and 0.6 M 1,2-dimethyl-3-n-propyl-imidazolium iodide in dry acetonitrile as redox electrolyte. In comparison with its analogue NKX-2586 (Langmuir 2004, 20, 4205), NKX-2753 with an extra side ring on the alkene chain produced much higher IPCE values at the same conditions. The side ring acted as a spacer to efficiently prevent dye aggregation when adsorbed on the TiO2 surface, resulting in significant improvements of short-circuit photocurrent, open-circuit photovoltage, and fill factor compared with NKX-2586 that aggregated on the TiO2 surface.  相似文献   
84.
The molecular displacements on the M011-->M101 phase transition of n-hexatriacontane (n-C36H74) have been investigated with an IR microscope designed for the oblique infrared transmission method. It has been clarified that two polytypic structures of the M011 modification, single-layered structure (Mon) and double-layered one (Orth II), both transform to the M101 modification of single-layered structure with their respective mechanisms. On the M011(Mon)-->M101 transition, the inclination direction of molecular axis is changed by 90 degrees through an intermediate state in which the molecular chain is set perpendicular to the basal plane of the single crystal. On the other hand, a polymorphic-polytypic composite structural change on the M011(Orth II)-->M101 transition is accomplished through two kinds of molecular displacements occurring alternately along the stacking direction of molecular layers.  相似文献   
85.
Sodium poly(styrenesulfonate)(polySSNa)-grafted polymer nanoparticles were synthesized by core-cross-linking of block copolymer micelles and subsequent chemical transformation. Block copolymers, poly(p-((1-methyl)silacyclobutyl)styrene-block-poly(neopentyl p-styrenesulfonate)s, polySBS-b-polySSPen, were synthesized by nitroxy-mediated living radical polymerization. The block copolymers formed micelles (Rh=15-23 nm, where Rh represents the hydrodynamic radius) with a polySBS core and polySSPen shell in acetone. The micelle core was cross-linked by ring-opening polymerization of silacyclobutyl groups in polySBS. Hydrolysis of the neopentyl groups provided polySSNa-grafted nanoparticles. The Rh of the particles before the hydrolysis ranged from 12 to 21 nm in acetone, while they varied to the range from 50 to 110 nm in water after the hydrolysis.  相似文献   
86.
87.
An intensive study for aqueous microcrystalline cellulose (MCC) suspensions was carried out in view of the relationship between a viscosity and a 1H spin-spin relaxation time (T2) of water. An investigation was carried out for four suspension systems with the different particle size distributions. The proton mole ratio () of bound water against MCC particles and T2 of bound water (T2,b) were evaluated from the T2 values obtained by Carr-Purcell- Meiboom-Gill (C.P.M.G) method and those by solid echo method, respectively. As a result of these analyses, the T2,b value for the aqueous MCC suspension was evaluated as 5 × 10–3 s and it was found that the system having a larger tended to show a higher viscosity. By relating the above results to the observation of the suspensions by an optical microscope, it was concluded that a network formed by MCC particles plays an important role in generating a high viscosity of MCC suspension, and that an averaged mobility of water molecules is sensitively affected by the network structure.  相似文献   
88.
A method of free energy calculation is proposed, which enables to cover a wide range of pressure and temperature. The free energies of proton-disordered hexagonal ice (ice Ih) and liquid water are calculated for the TIP4P [J. Chem. Phys. 79, 926 (1983)] model and the TIP5P [J. Chem. Phys. 112, 8910 (2000)] model. From the calculated free energy curves, we determine the melting point of the proton-disordered hexagonal ice at 0.1 MPa (atmospheric pressure), 50 MPa, 100 MPa, and 200 MPa. The melting temperatures at atmospheric pressure for the TIP4P ice and the TIP5P ice are found to be about T(m)=229 K and T(m)=268 K, respectively. The melting temperatures decrease as the pressure is increased, a feature consistent with the pressure dependence of the melting point for realistic proton-disordered hexagonal ice. We also calculate the thermal expansivity of the model ices. Negative thermal expansivity is observed at the low temperature region for the TIP4P ice, but not for the TIP5P ice at the ambient pressure.  相似文献   
89.
Details of cobalt-catalyzed cross-coupling reactions of alkyl halides with allylic Grignard reagents are disclosed. A combination of cobalt(II) chloride and 1,2-bis(diphenylphosphino)ethane (DPPE) or 1,3-bis(diphenylphosphino)propane (DPPP) is suitable as a precatalyst and allows secondary and tertiary alkyl halides--as well as primary ones--to be employed as coupling partners for allyl Grignard reagents. The reaction offers a facile synthesis of quaternary carbon centers, which has practically never been possible with palladium, nickel, and copper catalysts. Benzyl, methallyl, and crotyl Grignard reagents can all couple with alkyl halides. The benzylation definitely requires DPPE or DPPP as a ligand. The reaction mechanism should include the generation of an alkyl radical from the parent alkyl halide. The mechanism can be interpreted in terms of a tandem radical cyclization/cross-coupling reaction. In addition, serendipitous tandem radical cyclization/cyclopropanation/carbonyl allylation of 5-alkoxy-6-halo-4-oxa-1-hexene derivatives is also described. The intermediacy of a carbon-centered radical results in the loss of the original stereochemistry of the parent alkyl halides, creating the potential for asymmetric cross-coupling of racemic alkyl halides.  相似文献   
90.
Combinations of the five polyketide synthase (PKS) genes for biosynthesis of tylosin in Streptomyces fradiae (tylG), spiramycin in Streptomyces ambofaciens (srmG), or chalcomycin in Streptomyces bikiniensis (chmG) were expressed in engineered hosts derived from a tylosin-producing strain of S. fradiae. Surprisingly efficient synthesis of compounds predicted from the expressed hybrid PKS was obtained. The post-PKS tailoring enzymes of tylosin biosynthesis acted efficiently on the hybrid intermediates with the exception of TylH-catalyzed hydroxylation of the methyl group at C14, which was efficient if C4 bore a methyl group, but inefficient if a methoxyl was present. Moreover, for some compounds, oxidation of the C6 ethyl side chain to an unprecedented carboxylic acid was observed. By also expressing chmH, a homolog of tylH from the chalcomycin gene cluster, efficient hydroxylation of the 14-methyl group was restored.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号