首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1580篇
  免费   50篇
  国内免费   2篇
化学   1332篇
晶体学   22篇
力学   10篇
数学   74篇
物理学   194篇
  2023年   12篇
  2022年   18篇
  2021年   26篇
  2020年   20篇
  2019年   25篇
  2018年   20篇
  2017年   17篇
  2016年   34篇
  2015年   25篇
  2014年   40篇
  2013年   85篇
  2012年   76篇
  2011年   104篇
  2010年   48篇
  2009年   49篇
  2008年   118篇
  2007年   116篇
  2006年   107篇
  2005年   142篇
  2004年   98篇
  2003年   67篇
  2002年   73篇
  2001年   22篇
  2000年   19篇
  1999年   10篇
  1998年   24篇
  1997年   15篇
  1996年   25篇
  1995年   11篇
  1994年   12篇
  1993年   7篇
  1992年   5篇
  1991年   7篇
  1989年   8篇
  1988年   5篇
  1987年   4篇
  1986年   6篇
  1985年   12篇
  1984年   15篇
  1983年   6篇
  1982年   20篇
  1981年   10篇
  1980年   18篇
  1979年   5篇
  1978年   12篇
  1977年   8篇
  1976年   5篇
  1975年   5篇
  1974年   7篇
  1973年   3篇
排序方式: 共有1632条查询结果,搜索用时 15 毫秒
991.
Oxoporphyrinogens (OxPs) bind water molecules at pyrrolic NH and quinonoid carbonyl groups leading to visible colour changes due to variation in the π-electronic structure of OxPs. Introduction of hydrophilic substituents at two pyrrole NH groups improves sensitivity to H(2)O, and one OxP derivative is a colorimetric indicator of trace H(2)O (~50 ppm) in THF.  相似文献   
992.
A novel method to synthesize GaN crystals was studied by the reaction of Ga with Li3N under NH3 atmosphere. We have already reported the synthesis technique of GaN by the reaction of Ga2O3 with Li3N. However, the size of GaN crystals obtained by this method was limited to be smaller than several micrometers because of the solid phase reaction. In order to increase the size of GaN crystals, the method using liquid Ga as gallium source was studied for solid–liquid phase reaction. We found that the GaN crystals with the size of more than 100 μm were synthesized at 750 °C for 24 h under NH3 atmosphere. We propose the possible reaction mechanism as follows. Lithium amide (LiNH2) is synthesized by the reaction of Li3N with NH3 gas and then the crystal growth of GaN occurs by the reaction of Ga with LiNH2. We found that LiNH2 is a useful nitrogen source for the GaN synthesis method.  相似文献   
993.
A mononuclear copper(II)-hydroperoxo species has been generated by the reaction of Cu(I)-H2BPPA complex with dioxygen, which illustrates the enzymatic reaction process of the CuB site in the DbetaM and PHM.  相似文献   
994.
Quantum sieving of activated carbon fibers (ACFs) and their fluorides was observed for H(2) and D(2) adsorption at 20 K. Fluorination reduced the slit-shaped pore width of ACFs by 0.2 nm. The activated carbon fibers can act as highly efficient quantum sieves for H(2) and D(2), because the effective size of an H(2) molecule is larger than that of a D(2) molecule due to the uncertainty principle and the molecular size difference between H(2) and D(2) is significant in the micropore space. The D(2)/H(2) selectivity of ACFs evaluated by ideal adsorption solution theory was larger than that of the fluorinated ACFs.  相似文献   
995.
This review provides a summary of recent works concerning electrochemical immunoassays using magnetic microbeads as a solid phase. Recent research activity has led to innovative and powerful detection strategies that have been resulted in sensitive electrochemical detection. Coupling of magnetic microbeads with highly sensitive electrochemical detection provides a useful analytical method for environmental evaluation and clinical diagnostics, etc. The huge surface area and high dispersion capability of magnetic microbeads strongly contributes towards the development of new sensitive, rapid, user-friendly, and miniaturized electrochemical immunoassay systems. Moreover, the immunocomplexes formed on the magnetic microbead surface can be easily detected without pretreatment steps such as preconcentration or purification, which are normally required for standard methods. The discussion in this review is organized in two main subjects that include magnetic-microbead-based assays using enzyme labels and nanoparticle tags. Figure SEM image of Dynabeads M-280 (12% γ-Fe2O3 in polystyrene, diameter is 2.8 μm)
Hideki KuramitzEmail:
  相似文献   
996.
The conformations of two [2]rotaxanes, each comprising alpha-cyclodextrin as the rotor, a stilbene as the axle and 2,4,6-trinitrophenyl substituents as the capping groups, have been examined in solution and in the solid state, using (1)H NMR spectroscopy and X-ray crystallography, respectively. In solution, introducing substituents onto the stilbene prevents the cyclodextrin from being localized over one end of the axle. Instead the cyclodextrin moves back and forth along the substituted stilbene. In the solid state, the axles of the rotaxanes form extended molecular fibres that are separated from each other and aligned along a single axis. The molecular fibres are strikingly similar to those formed by the axle component of one of the rotaxanes in the absence of the cyclodextrin, but in the latter case they are neither separated nor all aligned.  相似文献   
997.
We find the necessary and sufficient conditions for the entropy rate of the system to be zero under any system-environment Hamiltonian interaction. We call the class of system-environment states that satisfy this condition lazy states. They are a generalization of classically correlated states defined by quantum discord, but based on projective measurements of any rank. The concept of lazy states permits the construction of a protocol for detecting global quantum correlations using only local dynamical information. We show how quantum correlations to the environment provide bounds to the entropy rate, and how to estimate dissipation rates for general non-Markovian open quantum systems.  相似文献   
998.
Sixp- andm-nitrophenyl-substituted methylpolysilanes have been prepared by the reaction of nitrobenzyne with monohydromethylpolysilanes. UV spectra ofp-nitrophenylpolysilanes revealed a strong red shift compared with the parent phenylpolysilanes due to the contribution of intramolecular charge transfer to the nitro group.  相似文献   
999.
This work studies numerically three-dimensional formation of a vortex array in a rotating cylindrical vessel. The formation process and the resulting equilibrium pattern are affected by pinning sites on the vessel’s bottom.  相似文献   
1000.
Grand canonical Monte Carlo (GCMC) simulations were used for the modeling of the hydrogen adsorption in idealized graphite slitlike pores. In all simulations, quantum effects were included through the Feynman and Hibbs second-order effective potential. The simulated surface excess isotherms of hydrogen were used for the determination of the total hydrogen storage, density of hydrogen in graphite slitlike pores, distribution of pore sizes and volumes, enthalpy of adsorption per mole, total surface area, total pore volume, and average pore size of pitch-based activated carbon fibers. Combining experimental results with simulations reveals that the density of hydrogen in graphite slitlike pores at 303 K does not exceed 0.014 g/cm(3), that is, 21% of the liquid-hydrogen density at the triple point. The optimal pore size for the storage of hydrogen at 303 K in the considered pore geometry depends on the pressure of storage. For lower storage pressures, p < 30MPa, the optimal pore width is equal to a 2.2 collision diameter of hydrogen (i.e., 0.65 nm), whereas, for p congruent with 50MPa, the pore width is equal to an approximately 7.2 collision diameter of hydrogen (i.e., 2.13 nm). For the wider pores, that is, the pore width exceeds a 7.2 collision diameter of hydrogen, the surface excess of hydrogen adsorption is constant. The importance of quantum effects is recognized in narrow graphite slitlike pores in the whole range of the hydrogen pressure as well as in wider ones at high pressures of bulk hydrogen. The enthalpies of adsorption per mole for the considered carbonaceous materials are practically constant with hydrogen loading and vary within the narrow range q(st) congruent with 7.28-7.85 kJ/mol. Our systematic study of hydrogen adsorption at 303 K in graphite slitlike pores gives deep insight into the timely problem of hydrogen storage as the most promising source of clean energy. The calculated maximum storage of hydrogen is equal to approximately 1.4 wt %, which is far from the United States Department of Energy (DOE) target (i.e., 6.5 wt %), thus concluding that the total storage amount of hydrogen obtained at 303 K in graphite slitlike pores of carbon fibers is not sufficient yet.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号