首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2690篇
  免费   48篇
  国内免费   5篇
化学   1704篇
晶体学   13篇
力学   27篇
数学   505篇
物理学   494篇
  2020年   27篇
  2019年   29篇
  2016年   39篇
  2015年   23篇
  2014年   37篇
  2013年   82篇
  2012年   54篇
  2011年   82篇
  2010年   59篇
  2009年   42篇
  2008年   76篇
  2007年   78篇
  2006年   61篇
  2005年   90篇
  2004年   79篇
  2003年   54篇
  2002年   42篇
  2001年   40篇
  2000年   41篇
  1999年   40篇
  1998年   25篇
  1997年   22篇
  1996年   35篇
  1994年   36篇
  1993年   32篇
  1992年   25篇
  1991年   35篇
  1990年   20篇
  1989年   29篇
  1988年   29篇
  1987年   31篇
  1986年   40篇
  1985年   46篇
  1984年   41篇
  1983年   36篇
  1982年   48篇
  1981年   52篇
  1980年   45篇
  1979年   35篇
  1978年   48篇
  1977年   42篇
  1976年   37篇
  1975年   26篇
  1974年   32篇
  1973年   24篇
  1972年   27篇
  1971年   34篇
  1970年   29篇
  1968年   22篇
  1967年   37篇
排序方式: 共有2743条查询结果,搜索用时 171 毫秒
101.
102.
103.
A cheap synthesis of the so‐called ‘decalin‐1,8‐diones’ started with the conjugate (1,4‐) addition of cyclohex‐2‐en‐1‐one derivatives to the γ‐position of the dilithium derivative (buta‐1,3‐diene‐1,1‐bis(olate)) of crotonic acid. Hydrogenation of these ‘1,4‐γ’ adducts and final cyclization afforded the enol tautomers of decalin‐1,8‐diones. Nucleophilic substitutions at these 3‐oxoenols by NH3 or primary amines created only monoamino products (namely, 3‐oxoenamines) whose reactions with OPCl3 yielded dihydro(1,3,2)oxazaphosphinin‐2‐one derivatives. The two regioisomers of a trimethyl‐3‐oxoenamine served as models for the constitutional assignments of the two rapidly interconverting (hence, individually NMR‐invisible), tautomeric trimethyl‐3‐oxoenols. Such methyl substitutions served to break the ‘pretended’ symmetry of ‘decalin‐1,8‐dione’. Hydrazine and 3‐oxoenols furnished oxygen‐free indazole derivatives whose N?H bonds exchanged with t1/2=ca. 0.00035 s at ca. ?58(9) °C.  相似文献   
104.
105.
106.
Abstract

The 2.4-bisfunctionalized phenol 1, a commercial antioxidant, is dehydrogenated regioselectively with potassium ferricyanide. affording the corresponding p-quinone methide 2. 1,6-Addition of nucleophiles e.g. thiols to 2 gives rise to the corresponding addition products e.g. the dithioacetals 4 of the corresponding substituted benzaldehyde. On the other hand, treatment of 2 with αα′-azoisobutyronitrile at 90°C leads to compounds 5a-b and 6, addition products of the cyanopropyl radical to the quinone methide 2. The structures of all products are confirmed mainly by 1H-NMR-and 13C-NMR-spectroscopy and the mode of their formation is discussed.  相似文献   
107.
Abstract

Human and animal excrements, in particular manure, stand for a significant and undisputable source of plant nutrients and renewable energy. In Europe, only 36% of P-inputs to soils originate from primary resources (rock phosphate) whereas 63% come from animal and human excretions applied to cropland as manure, digestion residues and sewage sludge. Simultaneously these waste flows represent a potential hazard to human health and aquatic bodies because of pathogens and eutrophication. Management of these waste flows is far from being sustainable, in part due to the lack of efficient processing technologies. A cooperative InnoEnergy—EIT financed KIC Knowledge and Innovation Community—research project pursues development and demonstration of highly efficient technologies to overcome the constraints and to yield renewable phosphate fertilizers and energy from waste flows that may have a combined technical energy potential of 3,600 PJ/year and an annual phosphate recovery potential of 4.5–5.5 million tonnes (as P2O5) in Europe.  相似文献   
108.
Highly dispersed molybdenum oxide supported on mesoporous silica SBA‐15 has been prepared by anion exchange resulting in a series of catalysts with changing Mo densities (0.2–2.5 Mo atoms nm?2). X‐ray absorption, UV/Vis, Raman, and IR spectroscopy indicate that doubly anchored tetrahedral dioxo MoO4 units are the major surface species at all loadings. Higher reducibility at loadings close to the monolayer measured by temperature‐programmed reduction and a steep increase in the catalytic activity observed in metathesis of propene and oxidative dehydrogenation of propane at 8 % of Mo loading are attributed to frustration of Mo oxide surface species and lateral interactions. Based on DFT calculations, NEXAFS spectra at the O‐K‐edge at high Mo loadings are explained by distorted MoO4 complexes. Limited availability of anchor silanol groups at high loadings forces the MoO4 groups to form more strained configurations. The occurrence of strain is linked to the increase in reactivity.  相似文献   
109.
The crystal structures of the M2NaIO6 series (M = Ca, Sr, Ba), prepared at 650 °C by ceramic methods, were determined from conventional laboratory X‐ray powder diffraction data. Synthesis and crystal growth were made by oxidizing I with O2(air) to I7+ followed by crystal growth in the presence of NaF as mineralizator, or by the reaction of the alkali‐metal periodate with the alkaline‐earth metal hydroxide. All three compounds are insoluble and stable in water. The barium compound crystallizes in the cubic space group Fm3m (no. 225) with lattice parameters of a = 8.3384(1) Å, whereas the strontium and calcium compounds crystallize in the monoclinic space group P21/c (no. 14) with a = 5.7600(1) Å, b = 5.7759(1) Å, c = 9.9742(1) Å, β = 125.362(1)° and a = 5.5376(1) Å, b = 5.7911(1) Å, c = 9.6055(1) Å, β = 124.300(1)°, respectively. The crystal structure consists of either symmetric (for Ba) or distorted (for Sr and Ca) perovskite superstructures. Ba2NaIO6 contains the first perfectly octahedral [IO6]5– unit reported. The compounds of the ortho‐periodates are stable up to 800 °C. Spectroscopic measurements as well as DFT calculations show a reasonable agreement between calculated and observed IR‐ and Raman‐active vibrations.  相似文献   
110.
Nanoparticle labels have enhanced the performance of diagnostic, screening, and other measurement applications and hold further promise for more sensitive, precise, and cost-effective assay technologies. Nevertheless, a clear view of the biomolecular interactions on the molecular level is missing. Controlling the ratio of molecular recognition over undesired nonspecific adhesion is the key to improve biosensing with nanoparticles. To improve this ratio with an aim to disallow nonspecific binding, a more detailed perspective into the kinetic differences between the cases is needed. We present the application of two novel methods to determine complex binding kinetics of bioconjugate nanoparticles, interferometry, and force spectroscopy. Force spectroscopy is an atomic force microscopy technique and optical interferometry is a direct method to monitor reaction kinetics in second-hour timescale, both having steadily increasing importance in nanomedicine. The combination is perfectly suited for this purpose, due to the high sensitivity to detect binding events and the ability to investigate biological samples under physiological conditions. We have attached a single biofunctionalized nanoparticle to the outer tip apex and studied the binding behavior of the nanoparticle in a sandwich-type immunoassay using dynamic force spectroscopy in millisecond timescale. Utilization of the two novel methods allowed characterization of binding kinetics in a time range spanning from 50 ms to 4 h. These experiments allowed detection and demonstration of differences between specific and nonspecific binding. Most importantly, nonspecific binding of a nanoparticle was reduced at contact times below 100 ms with the solid-phase surface.
Figure A single biofunctionalized nanoparticle was attached to the outer tip apex and the binding behavior of the nanoparticle in a sandwich-type immunoassay, A) without analyte, B) with analyte and C) saturating analyte concentration, was recorded using dynamic force spectroscopy in millisecond timescale. The setting allowed measurement of the association speed of nonspecific binding.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号