首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2944篇
  免费   69篇
  国内免费   21篇
化学   1939篇
晶体学   28篇
力学   86篇
数学   479篇
物理学   502篇
  2022年   22篇
  2021年   31篇
  2020年   40篇
  2019年   33篇
  2018年   29篇
  2017年   21篇
  2016年   49篇
  2015年   50篇
  2014年   52篇
  2013年   138篇
  2012年   138篇
  2011年   150篇
  2010年   85篇
  2009年   68篇
  2008年   164篇
  2007年   143篇
  2006年   169篇
  2005年   136篇
  2004年   109篇
  2003年   94篇
  2002年   103篇
  2001年   38篇
  2000年   32篇
  1999年   38篇
  1998年   42篇
  1997年   34篇
  1996年   28篇
  1995年   29篇
  1994年   30篇
  1993年   35篇
  1992年   29篇
  1991年   33篇
  1990年   29篇
  1989年   38篇
  1988年   29篇
  1987年   21篇
  1986年   21篇
  1985年   41篇
  1984年   47篇
  1983年   36篇
  1982年   48篇
  1981年   52篇
  1980年   31篇
  1979年   26篇
  1978年   38篇
  1977年   30篇
  1976年   48篇
  1975年   34篇
  1974年   34篇
  1973年   31篇
排序方式: 共有3034条查询结果,搜索用时 15 毫秒
91.
The recently published crystal structure of the D3 dopamine receptor shows a tightly packed region of aromatic residues on helices 5 and 6 in the space bridging the binding site and what is thought to be the origin of intracellular helical motion. This highly conserved region also makes contacts with residues on helix 3, and here we use double mutant cycle analysis and unnatural amino acid mutagenesis to probe the functional role of several residues in this region of the closely related D2 dopamine receptor. Of the eight mutant pairs examined, all show significant functional coupling (Ω > 2), with the largest coupling coefficients observed between residues on different helices, C3.36/W6.48, T3.37/S5.46, and F5.47/F6.52. Additionally, three aromatic residues examined, F5.47, Y5.48, and F5.51, show consistent trends upon progressive fluorination of the aromatic side chain. These trends are indicative of a functionally important electrostatic interaction with the face of the aromatic residue examined, which is likely attributed to aromatic-aromatic interactions between residues in this microdomain. We also propose that the previously determined fluorination trend at W6.48 is likely due to a sulfur-π interaction with the side chain of C3.36. We conclude that these residues form a tightly packed structural microdomain that connects helices 3, 5, and 6, thus forming a barrier that prevents dopamine from binding further toward the intracellular surface. Upon activation, these residues likely do not change their relative conformation, but rather act to translate agonist binding at the extracellular surface into the large intracellular movements that characterize receptor activation.  相似文献   
92.
To study porphyrin biosynthesis in human microvascular endothelial cells, HMEC-1 cells, a transformed human microvascular endothelial cell line, were incubated with 5-aminolevulinic acid (ALA), the precursor of endogenous porphyrins, and porphyrin accumulation was measured spectro-fluorometrically. The HMEC-1 cells accumulated porphyrin in a concentration-related and a time-dependent fashion. Protoporphyrin was the predominant porphyrin accumulated in the cells. The effect of light on protoporphyrin accumulation was evaluated by exposing the ALA-loaded HMEC-1 cells to ultraviolet-A (UVA) and blue light, followed by another incubation with ALA for 2–24 h. Enhancement of protoporphyrin accumulation in irradiated HMEC-1 cells was observed 2–24 h after irradiation, which was associated with a decrease in ferrochelatase protein and activity. Porphyrin accumulation from ALA after irradiation was significantly decreased when catalase (750–3000 U/mL, 29.3–44.3% suppression) or superoxide dismutase (270 U/mL, 36.4% suppression) was present during irradiation. These data demonstrate that HMEC-1 cells were capable of porphyrin biosynthesis, and that exposure of protoporphyrin-containing HMEC-1 cells to UVA and blue light, which includes the Soret band spectrum, decreased the ferrochelatase activity and its protein. These changes were mediated, at least in part, by reactive oxygen species.  相似文献   
93.
Abstract— The phototoxicity of argon laser irradiation was studied in aqueous suspensions of Porphyromonas endodontalis (American Type Culture Collection [ATCC] 35406), Porphyromonas gingivalis (ATCC 33277), Prevotella denticola (ATCC 33184) and two strains of Prevotella intermedia (ATCC 15033 and 49046), all "black-pigmented bacteria," BPB, that accumulate cellular porphyrins. Several of these species have been implicated in the etiology of Periodontol disease. Non-black-pigmented bacteria were also studied to test the specificity of irradiation as a potential photodynamic treatment for Periodontol infections. Cell suspensions were irradiated with an argon laser at fluences of 20–200 J/cm2. When cultured in hemin-supplemented media, ATCC 15033 was the most sensitive to irradiation. However, a second strain of the same species (ATCC 49046) was resistant. The photosensitivity of other species ranked ATCC 33277 > 35406 = 33184 = 35496. When hemin was replaced in media by hemoglobin, ATCC 33277 became resistant to irradiation. Protoporphyrin IX content in BPB cells was shown not to be a major factor determining photosensitivity. Oxygen was required during irradiation for BPB species to be affected. Non-black-pigmented bacteria were much less sensitive to irradiation than BPB.  相似文献   
94.
Tetraglycidyl 4,4′-diaminodiphenylmethane (TGDDM) undergoes homopolymerization on heating. Intramolecular reactions which compete with crosslinking favor the formation of cyclic structures with increasing thermal and fire resistance of the resin, whereas physical mechanical properties tend to decrease. The mechanism of thermal decomposition of TGDDM is studied by thermogravimetry, differential scanning calorimetry and thermal volatilization analysis with characterization of volatiles evolved and residue left. Thermal degradation of poly-(TGDDM) starts at 260°C with elimination of water from secondary alcoholic groups which is a typical pathway for epoxy resin degradation. Resulting unsaturations weaken bonds in the β-position and provoke the first chain breaking at allyl–amine and allyl–either bonds. With increasing temperature, saturated alkyl–ether bonds and alkyl carbon–carbon bonds are broken first, followed by the most stable alkyl–aryl bonds at T>365°C. The combustion performance of TGDDM is discussed on the basis of the thermal degradation behavior.  相似文献   
95.
To explore the nature of electron attachment to guanine-centered DNA single strands in the presence of a polarizable medium, a theoretical investigation of the DNA oligomer dinucleoside phosphate deoxyguanylyl-3',5'-deoxyguanosine (dGpdG) was performed by using density functional theory. Four different electron-distribution patterns for the radical anions of dGpdG in aqueous solution have been located as local minima on the potential energy surface. The excess electron is found to reside on the proton of the phosphate group (dGp(H-)dG), or on the phosphate group (dGp(.-)dG), or on the nucleobase at the 5' position (dG(.-)pdG), or on the nucleobase at the 3' position (dGpdG(.-)), respectively. These four radical anions are all expected to be electronically viable species under the influence of the polarizable medium. The predicted energetics of the radical anions follows the order dGp(.-)dG>dG(.-)pdG>dGpdG(.-)>dGp(H-)dG. The base-base stacking pattern in DNA single strands seems unaffected by electron attachment. On the contrary, intrastrand H-bonding is greatly influenced by electron attachment, especially in the formation of base-centered radical anions. The intrastrand H-bonding patterns revealed in this study also suggest that intrastrand proton transfer might be possible between successive guanines due to electron attachment to DNA single strands.  相似文献   
96.
A series of uranyl and lanthanide (trivalent Ce, Nd) mellitates (mel) has been hydrothermally synthesized in aqueous solvent. Mixtures of these 4f and 5f elements also revealed the formation of a rare case of lanthanide-uranyl coordination polymers. Their structures, determined by XRD single-crystal analysis, exhibit three distinct architectures. The pure lanthanide mellitate Ln(2)(H(2)O)(6)(mel) possesses a 3D framework built up from the connection of isolated LnO(6)(H(2)O)(3) polyhedra (tricapped trigonal prism) through the mellitate ligand. The structure of the uranyl mellitate (UO(2))(3)(H(2)O)(6)(mel)·11.5H(2)O is lamellar and consists of 8-fold coordinated uranium atoms linked to each other through the organic ligand giving rise to the formation of a 2D 3(6) net. The third structural type, (UO(2))(2)Ln(OH)(H(2)O)(3)(mel)·2.5H(2)O, involves direct oxygen bondings between the lanthanide and uranyl centers, with the isolation of a heterometallic dinuclear motif. The 9-fold coordinated Ln cation, LnO(5)(OH)(H(2)O)(3), is linked to the 7-fold coordinated uranyl (UO(2))O(4)(OH) (pentagonal bipyramid) via one μ(2)-hydroxo group and one μ(2)-oxo group. The latter is shared between the uranyl bonding (U═O = 1.777(4)/1.779(6) ?) and a long Ln-O bonding (Ce-O = 2.822(4) ?; Nd-O = 2.792(6) ?). This unusual linkage is a unique illustration of the so-called cation-cation interaction associating 4f and 5f metals. The dinuclear motif is then further connected through the mellitate ligand, and this generates organic-inorganic layers that are linked to each other via discrete uranyl (UO(2))O(4) units (square bipyramid), which ensure the three-dimensional cohesion of the structure. The mixed U-Ln carboxylate is thermally decomposed from 260 to 280 °C and then transformed into the basic uranium oxide (U(3)O(8)) together with U-Ln oxide with the fluorite structural type ("(Ln,U)O(2)"). At 1400 °C, only fluorite type "(Ln,U)O(2)" is formed with the measured stoichiometry of U(0.63)Ce(0.37)O(2) and U(0.60)Nd(0.40)O(2-δ).  相似文献   
97.
We report that poly(vinylpyrrolidone) (PVP), a common stabilizer of colloidal dispersions of noble metal nanostructures, has a dramatic effect on their surface-enhanced Raman scattering (SERS) activity and enables highly selective SERS detection of analytes of various type and charge. Nanostructures studied include PVP-stabilized Au-Ag nanoshells synthesized by galvanic exchange reaction of citrate-reduced Ag nanoparticles (NPs), as well as solid citrate-reduced Ag and Au NPs, both before and after stabilization with PVP. All nanostructures were characterized in terms of their size, surface plasmon resonance wavelength, surface charge, and chemical composition. While the SERS activities of the parent citrate-reduced Ag and Au NPs are similar for rhodamine 6G (R6G) and 1,2-bis(4-pyridyl)ethylene (BPE) at various pH values, PVP-stabilized nanostructures demonstrate large differences in SERS enhancement factors (EFs) between these analytes depending on their chemical nature and protonation state. At pH values higher than BPE's pK(a2) of 5.65, where the analyte is largely unprotonated, the PVP-coated Au-Ag nanoshells showed a high SERS EF of >10(8). In contrast, SERS EFs were 10(3)- to 10(5)-fold lower for the protonated form of BPE at lower pH values, or for the usually highly SERS-active cationic R6G. The differential SERS activity of PVP-stabilized nanostructures is a result of discriminatory binding of analytes within-adsorbed PVP monolayer and a subsequent increase of analyte concentration at the nanostructure surface. Our experimental and theoretical quantum chemical calculations show that BPE binding with PVP-stabilized Au-Ag nanoshells is stronger when the analyte is in its unprotonated form as compared to its cationic, protonated form at a lower pH.  相似文献   
98.
The chemical conversion of CO(2) has been studied by numerous experimental groups. Particularly the use of rhenium tricarbonyl-based molecular catalysts has attracted interest owing to their ability to absorb light, store redox equivalents, and convert CO(2) into higher-energy products. The mechanism by which these catalysts mediate reduction, particularly to CO and HCOO(-), is poorly understood, and studies aimed at elucidating the reaction pathway have likely been hindered by the large number of species present in solution. Herein the mechanism for carbon monoxide production using rhenium tricarbonyl catalysts has been investigated using density functional theory. The investigation presented proceeds from the experimental work of Meyer's group (J. Chem. Soc., Chem. Commun.1985, 1414-1416) in DMSO and Fujita's group (J. Am. Chem. Soc.2003, 125, 11976-11987) in dry DMF. The latter work with a simplified reaction mixture, one that removes the photo-induced reduction step with a sacrificial donor, is used for validation of the proposed mechanism, which involves formation of a rhenium carboxylate dimer, [Re(dmb)(CO)(3)](2)(OCO), where dmb = 4,4'-dimethyl-2,2'-bipyridine. CO(2) insertion into this species, and subsequent rearrangement, is proposed to yield CO and the carbonate-bridged [Re(dmb)(CO)(3)](2)(OCO(2)). Structures and energies for the proposed reaction path are presented and compared to previously published experimental observations.  相似文献   
99.
An ecofriendly and efficient microwave-irradiated solvent-free benzoylation method was developed. The procedure for C-benzoylation used 50 mol% AlCl3 as a Lewis acid catalyst at 130 °C and was completed in 10 min. The isolated yield was between 71% and 100%. N-benzoylation was conducted in a catalyst-free environment at 130 °C in 10 min. The isolated yield was between 80% and 100%.

Additional information

ACKNOWLEDGMENT

Financial support from U.S. Department of Education Title III grant to Tennessee State University is acknowledged.  相似文献   
100.
A phenanthrene-fused cyclooctatetraene, namely benzo[a]phenanthro[9,10-e]cyclooctene has been synthesized by employing the “Reich-Paquette” procedure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号