首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2965篇
  免费   68篇
  国内免费   21篇
化学   1927篇
晶体学   28篇
力学   87篇
数学   475篇
物理学   537篇
  2022年   22篇
  2021年   31篇
  2020年   40篇
  2019年   32篇
  2018年   27篇
  2017年   21篇
  2016年   48篇
  2015年   50篇
  2014年   48篇
  2013年   137篇
  2012年   138篇
  2011年   149篇
  2010年   83篇
  2009年   66篇
  2008年   162篇
  2007年   144篇
  2006年   169篇
  2005年   138篇
  2004年   110篇
  2003年   94篇
  2002年   104篇
  2001年   38篇
  2000年   32篇
  1999年   41篇
  1998年   43篇
  1997年   34篇
  1996年   28篇
  1995年   28篇
  1994年   34篇
  1993年   37篇
  1992年   36篇
  1991年   35篇
  1990年   31篇
  1989年   40篇
  1988年   30篇
  1987年   23篇
  1986年   23篇
  1985年   45篇
  1984年   47篇
  1983年   36篇
  1982年   48篇
  1981年   52篇
  1980年   31篇
  1979年   26篇
  1978年   38篇
  1977年   30篇
  1976年   48篇
  1975年   34篇
  1974年   34篇
  1973年   31篇
排序方式: 共有3054条查询结果,搜索用时 0 毫秒
61.
In the context of massless quantum electrodynamics (QED) with a linear covariant gauge fixing, the connection between the counterterm and the Hopf-algebraic approach to renormalization is examined. The coproduct formula of Green’s functions contains two invariant charges, which give rise to different renormalization group functions. All formulas are tested by explicit computations to third loop order. The possibility of a finite electron self-energy by fixing a generalized linear covariant gauge is discussed. An analysis of subdivergences leads to the conclusion that such a gauge only exists in quenched QED.  相似文献   
62.
Ferritic/martensitic (F/M) steels are good candidate structural materials for the future fusion reactors and spallation sources. However, irradiation of steels is known to produce hardening, loss of ductility, shift in ductile to brittle transition temperature (DBTT) and reduction of fracture toughness and creep resistance starting at low doses. Helium (He), produced by transmutation during the irradiation, also impacts mechanical properties. Numerous experimental and theoretical studies on the evolution of the microstructure of steels under irradiation have been conducted until now. We review the effect of irradiation-induced point defects and in particular of He on the mechanical properties of F/M steels. To cite this article: R. Schäublin et al., C. R. Physique 9 (2008).  相似文献   
63.
Direct grafting of organic monolayers on Si is of prime interest in order to give specific properties to a silicon surface. However, for microelectronics applications, this possibility is hampered by the limited stability of the grafted layers. It has been previously established that alkyl layers attached to Si surfaces through Si-C bonds become unstable at 250-300 °C, by desorption of alkenes. Changing the nature of the bonding to the surface might allow one to circumvent this desorption pathway and increase the layer stability. In our work, decanol and decyl aldehyde are reacted with the Si(1 1 1)-H surface at ∼100 °C during 20 h in order to obtain alkoxy monolayers. FTIR measurements performed in ATR geometry show that the grafted molecule surface coverage is on the order of 33% after reaction with decanol and 50% after reaction with decyl aldehyde. Characterization by AFM essentially reveals that the morphology of the grafted surfaces is unaffected as compared to that of Si-H surfaces. However, the edges of the terraces at alcohol-grafted surfaces exhibit some pitting, probably due to the presence of water in the grafting liquid. Thermal stability studies show that alkoxy chains progressively disappear from the Si surface between 200 and 400 °C. From the CH2/CH3 ratio in the CH region (2760-3070 cm−1), it appears that the chains undergo progressive dissociation by C-C bond breaking before their complete disappearance from the surface. Therefore, the thermal behaviour of alkoxy monolayers appears quite distinct from that of alkyl monolayers that tend to leave the surface in a much narrower temperature range (250-350 °C), essentially via breaking of the Si-C bonds.  相似文献   
64.
The method of oxygen isotope substitution in neutron diffraction is introduced as a site specific structural probe. It is employed to measure the structure of light versus heavy water, thus circumventing the assumption of isomorphism between H and D as used in more traditional neutron diffraction methods. The intramolecular and intermolecular O-H and O-D pair correlations are in excellent agreement with path integral molecular dynamics simulations, both techniques showing a difference of ?0.5% between the O-H and O-D intramolecular bond distances. The results support the validity of a competing quantum effects model for water in which its structural and dynamical properties are governed by an offset between intramolecular and intermolecular quantum contributions.  相似文献   
65.
66.
CCSD(T) coupled cluster ab initio SCF-MO calculations for 10-π-heteroannulenes reveal a range of potential surface characteristics, ranging from single-minimum aromatic planar species to triple-minimum systems involving both planar-aromatic and the two enantiomers of a C2 symmetric non-planar non-aromatic species. For the specific case of 1,4-dioxocine, the existence of barriers separating the three minima is attributed to an anti-aromatic Möbius-like transition state connecting the two equilibrium forms.  相似文献   
67.
68.
69.
Synchronization between experimental observations and a dynamical model with undetermined parameters can assist in completing the specification of the model parameters. The quality of the synchronization, a cost function to be minimized, typically depends on the difference between the data time series and the model time series. If the coupling between the data and the model is too strong, this cost function is small for any data and any model, and the variation of the cost function with respect to the parameters of interest is too small to permit selection of a value of the parameters. If the coupling is too small, synchronization is lost. We introduce two methods for balancing the competing desires of a small cost function and the numerical ability to determine parameters accurately. One method of ‘balanced’ synchronization adds a requirement that the conditional Lyapunov exponent of the model system, conditioned on being driven by the data, remain negative but small. The other method allows the coupling to vary in time according to the error in synchronization. This second method succeeds because the data and the model exhibit generalized synchronization in the region where the parameters of the model are well determined.  相似文献   
70.
X-ray free-electron lasers produce brief flashes of X-rays that are of about a billion times higher peak brightness than achievable from storage ring sources. Such a tremendous jump in X-ray source capabilities, which came in 2009 when the Linac Coherent Light Source began operations, was unprecedented in the history of X-ray science. Protein structure determination through the method of macromolecular crystallography has consistently benefited from the many increases in source performance from rotating anodes to all generations of synchrotron facilities. But when confronted with the prospects of such bright beams for structural biology, enthusiastic proposals were tempered by trepidation of the effects of such beams on samples and challenges to record data [1 M. Wilmanns, J. Synchr. Rad. 7, 41 (2000).[Crossref], [PubMed] [Google Scholar]]. A decade after these discussions (and others in the USA) on the applications of X-ray FELs for biology, the first experiments took place at LCLS, giving results that fulfilled many of the dreams of the early visionaries. In particular, the concept that diffraction representing the pristine object could be recorded before the X-ray pulse completely vaporizes the object was validated [2 H.N. Chapman, Nature 470, 73 (2011).[Crossref], [PubMed], [Web of Science ®] [Google Scholar]], confirming predictions [3 R. Neutze, Nature 406, 753 (2000).[Crossref], [Web of Science ®] [Google Scholar]] that established dose limits could be vastly exceeded using femtosecond-duration pulses. The first experiments illuminated a path to achieve room-temperature structures free of radiation damage, from samples too small to provide useful data at synchrotron facilities, as well as providing the means to carry out time-resolved crystallography at femtoseconds to milliseconds. In the five years since, progress has been substantial and rapid, invigorating the field of macromolecular crystallography [4 J.C.H. Spence and H.N. Chapman, Phi. Trans. Roy. Soc. B 369, 20130309 (2014).[Crossref], [PubMed], [Web of Science ®] [Google Scholar], 5 I. Schlichting, IUCrJ 2, 246 (2015).[Crossref], [PubMed], [Web of Science ®] [Google Scholar]]. This phase of development is far from over, but with both the LCLS and the SPring-8 Ångström Compact Free-electron Laser (SACLA) providing facilities for measurements, the benefits of X-ray FELs are already being translated into new biological insights.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号