首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   198篇
  免费   3篇
化学   136篇
晶体学   3篇
力学   1篇
数学   33篇
物理学   28篇
  2024年   1篇
  2023年   1篇
  2022年   3篇
  2021年   3篇
  2020年   9篇
  2019年   6篇
  2018年   5篇
  2017年   9篇
  2016年   10篇
  2015年   10篇
  2014年   14篇
  2013年   22篇
  2012年   20篇
  2011年   16篇
  2010年   17篇
  2009年   6篇
  2008年   5篇
  2007年   13篇
  2006年   8篇
  2005年   1篇
  2004年   8篇
  2003年   2篇
  2002年   1篇
  1998年   1篇
  1996年   1篇
  1993年   3篇
  1992年   2篇
  1991年   1篇
  1984年   2篇
  1981年   1篇
排序方式: 共有201条查询结果,搜索用时 15 毫秒
81.
Ceria-doped alumina sol-gel materials were obtained by two synthesis methods at low temperature; using method A, 2-propanol-diluted cerium precursor was slowly added at the time of the aluminum sol formation in acidic environment; using method B, the cerium salt was mixed with the aluminum alkoxide before sol formation in a basic environment. The supports were characterized by N2 physisorption, thermogravimetric and thermal differential analyses (TGA and DTA), X-ray diffraction (XRD), 27Al Magic Angle Spinning-Nuclear Magnetic Resonance (MAS-NMR), 2-propanol reactions, and ammonia temperature-programmed desorption (NH3-TPD). The samples obtained by Method B present similar values in properties such as specific areas, pore volumes, pore size distribution, and acidity compared to those of pure alumina; the alumina structure was not modified, but segregated crystallites of CeO2 were found in samples calcined at 1000 C, as observed by XRD. The ceria-containing materials synthesized by method A show a thermal behavior similar to that of alumina, with no appreciable segregation of CeO2 detected by XRD and modifications in the amounts of tetra, penta, and octa-hedral aluminum coordination as determined by NMR. 2-propanol reactions showed a good correlation with acid density determined by NH3-TPD. As the percentage of ceria in the material increases, surface area, pore volume, and acidity decrease. These changes can be correlated with an increase of pentacoordinated aluminum content. The results indicate that CeO2 is well dispersed in the alumina framework when method A is used, but synthesis method B does not have the same effect on the CeO2incorporation.  相似文献   
82.
A novel homologous series of N-[4-[4′-n-alkoxy)benzoyloxy-2-hydroxybenzylidene)-4-carbethoxy anilines, H2n+1CnOC6H4C(O)OC6H3(OH)C(H)?NC6H4COOC2H5 (n = 6, 8, 10, 12, 14, 16) and their copper(II) complexes have been synthesized. All these compounds have been characterized by suitable spectroscopic techniques. The mesomorphic properties of these compounds were investigated by differential scanning calorimetry (DSC) and polarizing optical microscopy (POM). The ligands exhibit wide range of enantiotropic smectic A and nematic phases as confirmed by their typical optical texture under polarizing microscope. The square planar copper(II) complexes of the ligands show only an isotropic phase at higher temperature and no mesogenic nature is observed. DFT calculations have been performed using GAUSSIAN-03 program at B3LYP level to obtain the stable electronic structure of the ligand with decyloxy chain length and its copper(II) complex.  相似文献   
83.
84.
Capture and sequestration of green house gas CO(2) is a major challenge for scientists and identifying right materials for this purpose is a task of outstanding importance. Through reliable computational studies, we have demonstrated that the clathrate cages (5(12), 4(3)5(6)6(3), 5(12)6(2), 5(12)6(4), and 5(12)6(8)) have a great potential to store CO(2). All the considered clathrates and their CO(2) inclusion complexes are optimized at B3LYP/6-31G(d) level of theory. The impact of DFT-D, M05-2X, and MP2 functionals on interaction energy were tested using various basis sets. Although different functionals and basis sets show variation in absolute IE values, the trend is consistent and does not depend on the level of the calculations. Dispersion was found important for these complexes and DFT-D shows comparable IE values with MP2 functional. The optimum and maximum cage occupancy for all the considered cages were tested on the basis of quantum chemical calculations. The maximum cage occupancy for all five considered cages (5(12), 4(3)5(6)6(3), 5(12)6(2), 5(12)6(4), and 5(12)6(8)) is one, two, two, two, and seven CO(2) molecules, respectively, and the optimum cage occupancy is one, one, one, two, and five CO(2) molecules, respectively. Thus, 5(12)6(8) cages can host up to 7 CO(2) molecules, resulting in about 32 wt %, which makes them highly promising materials.  相似文献   
85.
Temperature‐triggered switchable nanofibrous membranes are successfully fabricated from a mixture of cellulose acetate (CA) and poly(N‐isopropylacrylamide) (PNIPAM) by employing a single‐step direct electrospinning process. These hybrid CA‐PNIPAM membranes demonstrate the ability to switch between two wetting states viz. superhydrophilic to highly hydrophobic states upon increasing the temperature. At room temperature (23 °C) CA‐PNIPAM nanofibrous membranes exhibit superhydrophilicity, while at elevated temperature (40 °C) the membranes demonstrate hydrophobicity with a static water contact angle greater than 130°. Furthermore, the results here demonstrate that the degree of hydrophobicity of the membranes can be controlled by adjusting the ratio of PNIPAM in the CA‐PNIPAM mixture.

  相似文献   

86.
The present study involves the synthesis of Ce3+ doped ZnO nanophosphors by the zinc nitrate and cerium nitrate co-precipitation method. The synthesized nanophosphors were characterized with respect to their crystal structure, crystal morphology, particle size and photoluminescence (PL) properties using X-ray diffraction (XRD), scanning electron microscopy (SEM)/energy dispersive X-ray (EDX), transmission electron microscopy (TEM)/Energy-dispersive X-ray spectroscopy (EDS) and PL-spectroscopy respectively. XRD results revealed that ZnO nanophosphors are single phase and cubic type structures. Further, PL spectra of ZnO:Ce3+ nanophosphors showed green emission because of the charge transfer at single occupied oxygen vacancies with ZnO holes and red emission due to the cerium ion transitions. Intensity and fine structure of the Ce3+ luminescence and its temperature dependence are strongly influenced by the doping conditions. The formation of ZnO:Ce3+ nanophosphors was confirmed by Fourier transform infrared (FTIR) and XRD spectra.  相似文献   
87.
Developing large scale deposition techniques to fabricate thin porous films with suitable opto-electro nic properties for water catalysis is a necessity to mitigate climate change and have a sustainable environment.In this review,flame spray pyrolysis(FSP)technique,a rapid and scalable methodology to synthesize nanostructured transitional metal oxide films with designed functionalities,is firstly introduced.Furthermore,applications in electrochemical(EC)and photoelectrochemical(PEC)water splitting for the production of hydrogen fuel is also presented.The high combustion temperature and the aggregation of flame aerosol ensure that the FSP-made films possess high crystallinity,tunable porosity and high surface areas,making this method suitable either as catalysts for EC water splitting or as efficient semiconductor materials for PEC water splitting.Finally,a perspective on the next generation FSP engineered films with potential applications in energy storage and conversion is described.  相似文献   
88.
We present a framework for the development of elasticity and photoelasticity relationships for polyethylene terephthalate fiber networks, incorporating aspects of the primary molecular structure. Semicrystalline polymeric fiber networks are modeled as sequentially arranged crystalline and amorphous regions. Rotational isomeric states-Monte Carlo simulations of amorphous chains of up to 360 bonds (degree of polymerization, DP=60), confined between and bridging infinite impenetrable crystalline walls, have been characterized by Omega, the probability density of the intercrystal separation h, and Deltabeta, the polarizability anisotropy. ln Omega and Deltabeta have been modeled as functions of h, yielding the chain deformation relationships. The development has been extended to the fiber network to yield the photoelasticity relationships. We execute our framework by fitting to experimental stress-elongation data and employing the single fitted parameter to directly predict the birefringence-elongation behavior, without any further fitting. Incorporating the effect of strain-induced crystallization into the framework makes it physically more meaningful and yields accurate predictions of the birefringence-elongation behavior.  相似文献   
89.
The electrochemical behaviour of the ferrocenylacyl derivatives [FcCOER3] (E = C, Si or Ge; R = Me or Ph) is examined. One-electron oxidations to the substantially stable monocations [FcCOER3]+ occur at potentials significantly higher than that observed with ferrocene, but only minor differences hold within the series, independent of the nature of both E and R. In contrast the EPR spectra of the monocations for E = C show that the unpaired electron resides mainly on the iron, whereas for E = Si or Ge the electron density is essentially localized on the C5H4COER3 fragment.  相似文献   
90.
Extensive photophysical properties of isomeric tetra-2-pyridylporphyrin (TpyP(2)), tetra-3-pyridylporphyrin (TpyP(3)), and tetra-4-pyridylporphyrin (TpyP(4)) have been studied in the presence of a series of phenols of increasing hydrogen bonding power in dichloromethane solution by employing UV/vis spectroscopy; steady-state, time-resolved fluorescence spectroscopy; and transient absorption spectroscopic techniques. The change of absorption spectra of all three porphyrins as a function of different phenol concentrations established the preference of hydrogen bonded complex formation to the peripheral pyridyl nitrogen rather than the pyrrole nitrogen of the porphyrin macrocycle. The fluorescence behaviors of the porphyrins which were observed upon addition of different phenols point to a marked dependence on the nature of the added phenols. Phenols with an electron withdrawing group do not quench the fluorescence of porphyrins, whereas phenols with an electron donating group quench the singlet porphyrin both in static and dynamic pathways. A remarkable difference in quenching behaviors of singlet excited porphyrin by 4-methylphenol (4-MePhOH) and 4-MeOPhOH/4-EtOPhOH (4-EtOPhOH = 4-ethoxyphenol) are observed. The quenching of singlet excited porphyrins by 4-MePhOH is attributed to be purely static in nature, and the H-bond provides a strong nonradiative channel to singlet excited porphyrins. However, the quenching of singlet excited porphyrins by 4-MeOPhOH/4-EtOPhOH is mostly dynamic, and it is ascribed to be the reductive quenching of single excited porphyrins. Picosecond transient absorption study with TpyP(2) and 4-MeOPhOH provides the evidence of porphyrin radical anion and phenol radical cation of equal lifetime, which indicates the fact that electron transfer occurs from phenol to singlet excited porphyrin. The temperature effect on dynamic quenching by 4-MeOPhOH/4-EtOPhOH and kinetic deuterium isotope effect established the reaction to be a photoinduced concerted proton coupled electron transfer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号