首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4471篇
  免费   60篇
  国内免费   10篇
化学   3142篇
晶体学   21篇
力学   68篇
数学   935篇
物理学   375篇
  2019年   34篇
  2016年   75篇
  2015年   53篇
  2014年   36篇
  2013年   116篇
  2012年   94篇
  2011年   143篇
  2010年   102篇
  2009年   117篇
  2008年   145篇
  2007年   144篇
  2006年   149篇
  2005年   135篇
  2004年   106篇
  2003年   103篇
  2002年   107篇
  2001年   55篇
  2000年   77篇
  1999年   62篇
  1998年   59篇
  1997年   57篇
  1996年   72篇
  1995年   79篇
  1994年   62篇
  1993年   70篇
  1992年   96篇
  1991年   97篇
  1990年   77篇
  1989年   71篇
  1988年   61篇
  1987年   66篇
  1986年   70篇
  1985年   84篇
  1984年   91篇
  1983年   84篇
  1982年   81篇
  1981年   108篇
  1980年   63篇
  1979年   81篇
  1978年   75篇
  1977年   93篇
  1976年   66篇
  1975年   79篇
  1974年   86篇
  1973年   64篇
  1972年   55篇
  1971年   48篇
  1970年   37篇
  1967年   31篇
  1962年   29篇
排序方式: 共有4541条查询结果,搜索用时 15 毫秒
121.
The first crystal structure of a molybdenum complex 9 with a hydrogenated pterin and a sulfur ligand contributes to the discussion about the active center of molybdenum and tungsten enzymes containing a molybdopterin cofactor. Complex 9 was synthesized through a redox reaction of [MoVIO2 (LN-S2)] ( 8 ; LN-S2 = pyridine-2, 6-bis(methanethiolato)) with 5, 6, 7, 8-tetrahydropterin ( 7 ). 2 HCl (H4Ptr.2 HCl). The complex crystallizes, with a non-coordinating Cl-atom acting as a counterion, in the monoclinic space group C2/c (No. 15) with cell dimensions a = 22.900(5), b = 10.716(2), c = 17.551(4) Å, β = 120.36(3)°, and Z = 8. We interpret 9 as [MoIVO(LN-S2)(H+-q-H2Ptr)]Cl (q = quinonoid; H2Ptr = dihydropterin), i.e., a MoIV monooxo center coordinated by a pyridine-2, 6-bis(methanethiolato) ligand and a protonated dihydropterin. The spectroscopic properties of this new complex are comparable to those of other crystalline molybdenum complexes of hydrogenated pterins without additional S-coordination. The slightly H2O-soluble complex 9 reacts with the natural enzyme substrate DMSO very slowly, possibly due to the lack of easily dissociable ligands at the metal center.  相似文献   
122.
Khusimone (1), one of the main odor-donating compounds of vetiver oil is subject of the following study on structure/odor relationship. The omittance of the ethano bridge of the tricyclic khusimone leads to a bicyclic system. The stereoselective approach to this degraded structure is described, and the olfactory properties are studied. The key step of the synthesis of the hydrindane nucleus is based on a highly diastereoselective conjugate addition to a chiral oxo-cyclopentene-2-carboxylate.  相似文献   
123.
124.
The rearrangement of aminoethanol catalyzed by ethanolamine ammonia lyase is investigated by computational means employing DFT (B3LYP/6-31G) and ab initio molecular orbital theory (QCISD/cc-pVDZ). The study aims at providing a detailed account on various crucial aspects, in particular a distinction between a direct intramolecular migration of the partially protonated NH(2) group vs elimination of NH(4)(+). Three mechanistic scenarios were explored: (i) According to the calculations, irrespective of the nature of the protonating species, intramolecular migration of the NH(3) group is energetically less demanding than elimination of NH(4)(+). However, all computed activation enthalpies exceed the experimentally derived activation enthalpy (15 kcal/mol) associated with the rate-determining step, i.e., the hydrogen abstraction from the 5'-deoxyadenosine by the product radical. For example, when imidazole is used as a model system for His interacting with the NH(3) group of the substrate, the activation enthalpy for the migration process amounts to 27.4 kcal/mol. If acetic acid is employed to mimic Asp or Glu, the activation enthalpy is somewhat lower, being equal to 24.2 kcal/mol. (ii) For a partial deprotonation of the substrate 2 at the OH group, the rearrangement mechanism consists of the dissociation of an NH(2) radical from C(2) and its association at C(1) atom. For all investigated proton acceptors (i.e., OH(-), HCOO(-), CH(3)COO(-), CH(2)NH, imidazole), the activation enthalpy for the dissociation step also exceeds 15 kcal/mol. Typical data are 20.2 kcal/mol for Ac(-) and 23.8 kcal/mol for imidazole. (iii) However, in a synergistic action of partial protonation of the NH(2) group and partial deprotonation of the OH group by the two conceivable catalytic auxiliaries Asp/Glu and His, the activation enthalpy computed is compatible with the experimental data. For imidazole and acetate as model systems, the activation enthalpy is equal to 13.7 kcal/mol. This synergistic action of the two catalytic groups is expected to take place in a physiologically realistic pH range of 6-9.5, and the present computational findings may help to further characterize the yet unknown structural details of the ethanolamine ammonia lyase's active site.  相似文献   
125.
Gas-phase experiments provide information which, in conjunction with results from electronic structure calculations, help to unravel the critical role relativistic effects play in many areas of transition-metal chemistry. Examples include the thermochemical data of gold halides in different oxidation states, the fascinating structural properties of gold(I) complexes, the dramatic effects of ligands on the ionization energy of gold, or the binding in cationic metal-carbene complexes. Furthermore, in the context of methane functionalization, special emphasis is paid to the chemistry of cationic metal-carbene complexes, and at uncovering the mechanistic details of important carbon-heteroatom coupling reactions. It is the interplay of conducting experiments of "isolated" molecules under well-defined conditions with reliable electronic structure calculations that has considerably improved our understanding of the role relativistic effects play in the context of transition-metal chemistry, catalysis, and beyond.  相似文献   
126.
Preparation, Characterization and Reaction Behaviour of Sodium and Potassium Hydridosilylamides R2(H)Si—N(M)R′ (M = Na, K) — Crystal Structure of [(Me3C)2(H)Si—N(K)SiMe3]2 · THF The alkali metal hydridosilylamides R2(H)Si—N(M)R′ 1a‐Na — 1d—Na and 1a‐K — 1d‐K ( a : R = Me, R′ = CMe3; b : R = Me, R′ = SiMe3; c : R = Me, R′ = Si(H)Me2; d : R = CMe3, R′= SiMe3) have been prepared by reaction of the corresponding hydridosilylamines 1a — 1d with alkali metal M (M = Na, K) in presence of styrene or with alkali metal hydrides MH (M = Na, K). With NaNH2 in toluene Me2(H)Si—NHCMe3 ( 1a ) reacted not under metalation but under nucleophilic substitution of the H(Si) atom to give Me2(NaNH)Si—NHCMe3 ( 5 ). In the reaction of Me2(H)Si—NHSiMe3 ( 1b ) with NaNH2 intoluene a mixture of Me2(NaNH)Si—NHSiMe3 and Me2(H)Si—N(Na)SiMe3 ( 1b‐Na ) was obtained. The hydridosilylamides have been characterized spectroscopically. The spectroscopic data of these amides and of the corresponding lithium derivatives are discussed. The 29Si‐NMR‐chemical shifts and the 29Si—1H coupling constants of homologous alkali metal hydridosilylamides R2(H)Si—N(M)R′ (M = Li, Na, K) are depending on the alkali metal. With increasing of the ionic character of the M—N bond M = K > Na > Li the 29Si‐NMR‐signals are shifted upfield and the 29Si—1H coupling constants except for compounds (Me3C)(H)Si—N(M)SiMe3 are decreased. The reaction behaviour of the amides 1a‐Na — 1c‐Na and 1a‐K — 1c‐K was investigated toward chlorotrimethylsilane in tetrahydrofuran (THF) and in n‐pentane. In THF the amides produced just like the analogous lithium amides the corresponding N‐silylation products Me2(H)Si—N(SiMe3)R′ ( 2a — 2c ) in high yields. The reaction of the sodium amides with chlorotrimethylsilane in nonpolar solvent n‐pentane produced from 1a‐Na the cyclodisilazane [Me2Si—NCMe3]2 ( 8a ), from 1b‐Na and 1‐Na mixtures of cyclodisilazane [Me2Si—NR′]2 ( 8b , 8c ) and N‐silylation product 2b , 2c . In contrast to 1b‐Na and 1c‐Na and to the analogous lithium amides the reaction of 1b‐K and 1c‐K with chlorotrimethylsilane afforded the N‐silylation products Me2(H)Si—N(SiMe3)R′ ( 2b , 2c ) in high yields. The amide [(Me3C)2(H)Si—N(K)SiMe3]2·THF ( 9 ) crystallizes in the space group C2/c with Z = 4. The central part of the molecule is a planar four‐membered K2N2 ring. One potassium atom is coordinated by two nitrogen atoms and the other one by two nitrogen atoms and one oxygen atom. Furthermore K···H(Si) and K···CH3 contacts exist in 9 . The K—N distances in the K2N2 ring differ marginally.  相似文献   
127.
128.
129.
130.
Two solid solutions of lead zirconium titanates PbZr x Ti1 – x O3 (x = 0.1 and 0.35) as well as the reference compounds lead titanate and lead zirconate were prepared from zirconium and titanium n-propoxide, dissolved in 2-methoxyethanol, by sol-gel process. The amorphous products after pyrolysis of the dried gels and the crystalline phases were studied by EXAFS spectroscopy to monitor the structural changes from the amorphous oxide mixture to the crystalline ceramics after calcination. Additionally, the crystalline phases were identified by X-ray diffraction (XRD).It follows from the analysis of the EXAFS data that the local order of the amorphous phases seems to be completely different from that of the crystalline phase. There is no indication of a preformation of the local order of the perovskite structure. The analysis of our EXAFS spectra can be interpreted very consistently with the assumption that in the amorphous samples a segregation exists on molecular level and the low crystallisation temperatures are a consequence of very short diffusion paths.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号