首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   53篇
  免费   1篇
化学   35篇
力学   4篇
数学   10篇
物理学   5篇
  2024年   1篇
  2022年   2篇
  2020年   3篇
  2019年   2篇
  2018年   1篇
  2017年   1篇
  2015年   3篇
  2014年   1篇
  2013年   1篇
  2012年   2篇
  2011年   4篇
  2010年   3篇
  2009年   2篇
  2007年   6篇
  2006年   7篇
  2005年   5篇
  2003年   5篇
  2002年   1篇
  1995年   1篇
  1990年   1篇
  1972年   1篇
  1941年   1篇
排序方式: 共有54条查询结果,搜索用时 31 毫秒
51.
Wood strength is highly anisotropic and tissue-specific. We herein show how it can be predicted from local failure of the nanoscaled wood component lignin and from the microstructure and the composition of the wood tissue, by means of continuum micromechanics. The suitability of the model is confirmed by the good agreement between model-predicted biaxial strength values of wood and corresponding experimental results. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
52.
53.
We have presented an EPR‐based approach for deducing the RAFT equilibrium constant, Keq, of a dithiobenzoate‐mediated system [Meiser, W. and Buback M. Macromol. Rapid Commun. 2011 , 32, 1490]. Our value is by four orders of magnitude below Keq from ab initio calculations for the identical monomer‐free system. Junkers et al. [Macromol. Rapid Commun. 2011 , 32, 1891] claim that our EPR approach would be model dependent and our data could be equally well fitted by assuming slow addition of radicals to the RAFT agent and slow fragmentation of the so‐obtained intermediate radical as well as high cross‐termination rate. By identification of all side products, our EPR‐based method is shown to be model independent and to provide reliable Keq values, which demonstrate the validity of the intermediate radical termination model.  相似文献   
54.
As candidates for tissue‐independent phase properties of cortical and trabecular bone we consider (i) hydroxyapatite, (ii) collagen, (iii) ultrastructural water and non‐collagenous proteins, and (iv) marrow (water) filling the Haversian canals and the intertrabecular space. From experiments reported in the literature, we assign stiffness properties to these phases (experimental set I). On the basis of these phase definitions, we develop, within the framework of continuum micromechanics, a two step homogenization procedure: (i) At a length scale of 100 – 200 nm, hydroxyapatite (HA) crystals build up a crystal foam ('polycrystal'), and water and non‐collagenous organic matter fill the intercrystalline space (homogenization step I); (ii) At the ultrastructural scale of mineralized tissues, i.e. 5 to 10 microns, collagen assemblies composed of collagen molecules are embedded into the crystal foam, acting mechanically as cylindrical templates. At an enlarged material scale of 5 to 10 mm, the second homogenization step also accommodates the micropore space as cylindrical pore inclusions (Haversian and Volkmann canals, inter‐trabecular space), that are suitable for both trabecular and cortical bone. The input of this micromechanical model are tissue‐specific volume fractions of HA, collagen, and of the micropore space. The output are tissue‐specific ultrastructural and microstructural (=macroscopic=apparent) elasticity tensors. A second independent experimental set (composition data and experimental stiffness values) is employed to validate the proposed model. We report a a good agreement between model predictions and experimentally determined macroscopic stiffness values. The validation suggests that hydroxyapatite, collagen, and water are tissue‐independent phases, which define, through their mechanical interaction, the elasticity of all bones, whether cortical or trabecular.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号