首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   725篇
  免费   28篇
  国内免费   2篇
化学   536篇
晶体学   4篇
力学   27篇
数学   101篇
物理学   87篇
  2023年   4篇
  2022年   3篇
  2021年   4篇
  2020年   12篇
  2019年   13篇
  2018年   8篇
  2017年   4篇
  2016年   15篇
  2015年   23篇
  2014年   19篇
  2013年   38篇
  2012年   58篇
  2011年   58篇
  2010年   44篇
  2009年   41篇
  2008年   43篇
  2007年   42篇
  2006年   43篇
  2005年   40篇
  2004年   36篇
  2003年   18篇
  2002年   20篇
  2001年   6篇
  2000年   7篇
  1999年   8篇
  1998年   8篇
  1997年   12篇
  1996年   12篇
  1995年   7篇
  1994年   7篇
  1993年   5篇
  1992年   8篇
  1990年   3篇
  1989年   7篇
  1987年   3篇
  1986年   3篇
  1984年   6篇
  1983年   8篇
  1980年   4篇
  1979年   4篇
  1978年   6篇
  1975年   3篇
  1974年   4篇
  1971年   3篇
  1925年   2篇
  1920年   2篇
  1910年   2篇
  1901年   3篇
  1892年   3篇
  1891年   2篇
排序方式: 共有755条查询结果,搜索用时 20 毫秒
51.
Direct numerical simulation (DNS) has been performed to study the channel flow over a backward‐facing step at a Reynolds number Reb=5600 based on the step height h and the inflow bulk velocity Ub. A dynamic method has been used in order to generate realistic turbulent inflow conditions. The results upstream of the step compared well with the fully developed channel flow. Downstream of the step our results show excellent agreement with experimental data. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
52.
We develop an analog of classical oscillation theory for Sturm–Liouville operators which, rather than measuring the spectrum of one single operator, measures the difference between the spectra of two different operators. This is done by replacing zeros of solutions of one operator by weighted zeros of Wronskians of solutions of two different operators. In particular, we show that a Sturm-type comparison theorem still holds in this situation and demonstrate how this can be used to investigate the number of eigenvalues in essential spectral gaps. Furthermore, the connection with Krein’s spectral shift function is established. Research supported by the Austrian Science Fund (FWF) under Grant No. Y330.  相似文献   
53.
54.
55.
The present investigation deals with a mathematical model representing the mass transfer to blood streaming through the arteries under stenotic condition. The mass transport refers to the movement of atherogenic molecules, that is, blood-borne components, such as oxygen and low-density lipoproteins from flowing blood into the arterial walls or vice versa. The blood flowing through the artery is treated to be Newtonian and the arterial wall is considered to be rigid having differently shaped stenoses in its lumen arising from various types of abnormal growth or plaque formation. The nonlinear unsteady pulsatile flow phenomenon unaffected by concentration-field of the macromolecules is governed by the Navier–Stokes equations together with the equation of continuity while that of mass transfer is controlled by the convection-diffusion equation. The governing equations of motion accompanied by appropriate choice of the boundary conditions are solved numerically by MAC(Marker and Cell) method and checked numerical stability with desired degree of accuracy. The quantitative analysis carried out finally includes the respective profiles of the flow-field and concentration along with their distributions over the entire arterial segment as well. The key factors like the wall shear stress and Sherwood number are also examined for further qualitative insight into the flow and mass transport phenomena through arterial stenosis. The present results show quite consistency with several existing results in the literature which substantiate sufficiently to validate the applicability of the model under consideration.  相似文献   
56.
57.
58.
The title compound is characterized by IR (gas phase, Ar matrix), Raman (liquid, amorphous, and crystalline solid), and 19F, 31P, 14N and 15N NMR spectroscopy, as well as by quantum chemical DFT calculations.  相似文献   
59.
A large series of ionic liquids (ILs) based on the weakly coordinating alkoxyaluminate [Al(hfip)(4)](-) (hfip: hexafluoroisopropoxy) with classical as well as functionalized cations were prepared, and their principal physical properties determined. Melting points are between 0 ([C(4)MMIM][Al(hfip)(4)]) and 69 °C ([C(3)MPip][Al(hfip)(4)]); three qualify as room-temperature ILs (RTILs). Crystal structures for six ILs were determined; their structural parameters and anion-cation contacts are compared here with known ILs, with a special focus on their influence on physical properties. Moreover, the biodegradability of the compounds was investigated by using the closed-bottle and the manometric respirometry test. Temperature-dependent viscosities and conductivities were measured between 0 and 80 °C, and described by either the Vogel-Fulcher-Tammann (VFT) or the Arrhenius equations. Moreover, conductivities and viscosities were investigated in the context of the molecular volume, V(m). Physical property-V(m) correlations were carried out for various temperatures, and the temperature dependence of the molecular volume was analyzed by using crystal structure data and DFT calculations. The IL ionicity was investigated by Walden plots; according to this analysis, [Al(hfip)(4)](-) ILs may be classified as "very good to good ILs"; while [C(2)MIM][Al(hfip)(4)] is a better IL than [C(2)MIM][NTf(2)]. The dielectric constants of ten [Al(hfip)(4)](-) ILs were determined, and are unexpectedly high (ε(r)=11.5 to 16.8). This could be rationalized by considering additional calculated dipole moments of the structures frozen in the solid state by DFT. The determination of hydrogen gas solubility in [Al(hfip)(4)](-) RTILs by high-pressure NMR spectroscopy revealed very high hydrogen solubilities at 25 °C and 1 atm. These results indicate the significant potential of this class of ILs in manifold applications.  相似文献   
60.
Pure sym‐N2O4 isolated in solid Ne was obtained by passing cold neon gas over solid N2O4 at ?115 °C and quenching the resulting gaseous mixture at 6.3 K. Filtered UV irradiation (260–400 nm) converts sym‐N2O4 into trans‐ONONO2, a weakly interacting (NO2)2 radical pair, and traces of the cis‐N2O2?O2 complex. Besides the weakly bound ON?O2 complex, cis‐N2O2?O2 was also obtained by co‐deposition of NO and O2 in solid Ne at 6.3 K, and both complexes were characterised by their matrix IR spectra. Concomitantly formed cis‐N2O2 dissociated on exposure to filtered IR irradiation (400–8000 cm?1), and the cis‐N2O2?O2 complex rearranged to sym‐N2O4 and trans‐ONONO2. Experiments using 18O2 in place of 16O2 revealed a non‐concerted conversion of cis‐N2O2?O2 into these species, and gave access to four selectively di‐18O‐substituted trans‐ONONO2 isotopomers. No isotopic scrambling occurred. The IR spectra of sym‐N2O4 and of trans‐ONONO2 in solid Ne were recorded. IR fundamentals of trans‐ONONO2 were assigned based on experimental 16/18O isotopic shifts and guided by DFT calculations. Previously reported contradictory measurements on cis‐ and trans‐ONONO2 are discussed. Dinitroso peroxide, ONOONO, a proposed intermediate in the IR photoinduced rearrangement of cis‐N2O2?O2 to the various N2O4 species, was not detected. Its absence in the photolysis products indicates a low barrier (≤10 kJ mol?1) for its exothermic O? O bond homolysis into a (NO2)2 radical pair.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号