首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1220篇
  免费   37篇
  国内免费   4篇
化学   962篇
晶体学   3篇
力学   11篇
数学   149篇
物理学   136篇
  2023年   18篇
  2022年   39篇
  2021年   45篇
  2020年   25篇
  2019年   24篇
  2018年   14篇
  2017年   27篇
  2016年   39篇
  2015年   43篇
  2014年   54篇
  2013年   72篇
  2012年   90篇
  2011年   90篇
  2010年   52篇
  2009年   60篇
  2008年   60篇
  2007年   51篇
  2006年   53篇
  2005年   63篇
  2004年   45篇
  2003年   35篇
  2002年   35篇
  2001年   13篇
  2000年   15篇
  1999年   9篇
  1997年   6篇
  1996年   9篇
  1995年   5篇
  1994年   7篇
  1993年   10篇
  1992年   13篇
  1991年   6篇
  1990年   5篇
  1989年   6篇
  1988年   6篇
  1987年   5篇
  1985年   5篇
  1984年   8篇
  1983年   7篇
  1982年   4篇
  1981年   6篇
  1979年   5篇
  1978年   6篇
  1977年   6篇
  1967年   4篇
  1966年   7篇
  1965年   5篇
  1964年   6篇
  1963年   7篇
  1962年   4篇
排序方式: 共有1261条查询结果,搜索用时 15 毫秒
51.
52.
Three‐dimensional hydrogel supports for mesenchymal and neural stem cells (NSCs) are promising materials for tissue engineering applications such as spinal cord repair. This study involves the preparation and characterization of superporous scaffolds based on a copolymer of 2‐hydroxyethyl and 2‐aminoethyl methacrylate (HEMA and AEMA) crosslinked with ethylene dimethacrylate. Ammonium oxalate is chosen as a suitable porogen because it consists of needle‐like crystals, allowing their parallel arrangement in the polymerization mold. The amino group of AEMA is used to immobilize RGDS and SIKVAVS peptide sequences with an N‐γ‐maleimidobutyryloxy succinimide ester linker. The amount of the peptide on the scaffold is determined using 125I radiolabeled SIKVAVS. Both RGDS‐ and SIKVAVS‐modified poly(2‐hydroxyethyl methacrylate) scaffolds serve as supports for culturing human mesenchymal stem cells (MSCs) and human fetal NSCs. The RGDS sequence is found to be better for MSC and NSC proliferation and growth than SIKVAVS.

  相似文献   

53.
In this work we present experimental results about the formation, properties and structure of sol — gel silica based biocomposite containing Calcium alginate as an organic compound. Two different types of silicon precursors have been used in the synthesis: tetramethylortosilicate (TMOS) and ethyltrimethoxysilane (ETMS). The samples have been prepared at room temperature. The hybrids have been synthesized by replacing different quantitis of the inorganic precursor with alginate. The structure of the obtained hybrid materials has been studied by XRD, IR Spectroscopy, EDS, BET and AFM. The results proved that all samples are amorphous possessing a surface area from 70 to 290 m2/g. It has also been established by FT IR spectra that the hybrids containing TMOS display Van der Walls and Hydrogen bonding or electrostatic interactions between the organic and inorganic components. Strong chemical bonds between the inorganic and organic components in the samples with ETMS are present. A self-organized nanostructure has been observed by AFM. In the obtained hybrids the nanobuilding blocks average in size at about 8–14 nm for the particles.  相似文献   
54.
Essential oils (EOs) and hydrolates (Hds) are natural sources of biologically active ingredients with broad applications in the cosmetic industry. In this study, nationally produced (mainland Portugal and Azores archipelago) EOs (11) and Hds (7) obtained from forest logging and thinning of Eucalyptus globulus, Pinus pinaster, Pinus pinea and Cryptomeria japonica, were chemically evaluated, and their bioactivity and sensorial properties were assessed. EOs and Hd volatiles (HdVs) were analyzed by GC-FID and GC-MS. 1,8-Cineole was dominant in E. globulus EOs and HdVs, and α- and β-pinene in P. pinaster EOs. Limonene and α-pinene led in P. pinea and C. japonica EOs, respectively. P. pinaster and C. japonica HVs were dominated by α-terpineol and terpinen-4-ol, respectively. The antioxidant activity was determined by DPPH, ORAC and ROS. C. japonica EO showed the highest antioxidant activity, whereas one of the E. globulus EOs showed the lowest. Antimicrobial activity results revealed different levels of efficacy for Eucalyptus and Pinus EOs while C. japonica EO showed no antimicrobial activity against the selected strains. The perception and applicability of emulsions with 0.5% of EOs were evaluated through an in vivo sensory study. C. japonica emulsion, which has a fresh and earthy odour, was chosen as the most pleasant fragrance (60%), followed by P. pinea emulsion (53%). In summary, some of the studied EOs and Hds showed antioxidant and antimicrobial activities and they are possible candidates to address the consumers demand for more sustainable and responsibly sourced ingredients.  相似文献   
55.
Basicity constants for a series of 3,7-diazabicyclo[3.3.1]nonane derivatives in acetonitrile with a variation over 13 orders of magnitude have been determined using a spectrophotometric titration technique. An excellent correlation between basicity and calculated proton affinities obtained at PCM-B3LYP/6-31+G(d)//B3LYP/6-31G(d) level was found. The results are discussed in terms of substituent effects and compared to (15)N NMR chemical shifts.  相似文献   
56.
We have recorded vapor-phase photoacoustic spectra of cyclopropane, ethylene oxide, and ethylene sulfide in the third, fourth, and fifth CH-stretching overtone regions. We have used a harmonically coupled anharmonic oscillator local mode model to facilitate analysis of the spectra. Fermi resonance between the CH-stretching and HCH-bending vibrations is essential to explain the observed wide and multistructured CH-stretching overtone bands. A number of weak combination bands can account for the remaining experimental features observed to the blue of the CH-stretching regions. We have reassigned the fundamental spectra of these three-membered rings.  相似文献   
57.
A tetraazamacrocycle containing ferrocene moieties has been synthesized and characterized. The tetraprotonated form of this compound was evaluated as a receptor (R) for anion recognition of several substrates (S), Cl(-), PF(6)(-), HSO(4)(-), H(2)PO(4)(-) and carboxylates, such as p-nitrobenzoate (p-nbz(-)), phthalate (ph(2-)), isophthalate (iph(2-)) and dipicolinate (dipic(2-)). (1)H NMR titrations in CD(3)OD indicated that this receptor is not suitable for recognizing HSO(4)(-) and H(2)PO(4)(-), but weakly binds p-nbz(-), and strongly interacts with ph(2-), dipic(2-), and iph(2-) anions forming 1 : 2 assembled species. The largest beta(2) binding constant was determined for ph(2-), followed by dipic(2-) and finally iph(2-). The effect of the anionic substrates on the electron-transfer process of the ferrocene units of R was evaluated using cyclic voltammetry (CV) and square wave voltammetry (SWV) in methanol solution and 0.1 mol dm(-3)(CH(3))(4)NCl as the supporting electrolyte. Titrations of the receptor were undertaken by addition of anion solutions in their tetrabutylammonium or tetramethylammonium forms. The protonated ligand exhibits a reversible voltammogram, which shifts cathodically in the presence of the substrates. The data revealed kinetic constraints in the formation of the receptor/substrate entity for dipic(2-), ph(2-) and iph(2-) anions, but not for p-nbz(-). In spite of the slow kinetics of assembled species formation with the ph(2-) substrate, this anion provides the largest redox-response when the supramolecular entity is formed, followed by dipic(2-), iph(2-) and finally p-nbz(-) anions. This trend is in agreement with the (1)H NMR results and the values of the binding constants. Single crystal X-ray structures of the receptor with PF(6)(-), ph(2-), iph(2-) and p-nbz(-) were carried out and showed that supermolecules with a RS(2) stoichiometry are formed with the first three anions, but RS(4) with p-nbz(-). In all cases the binding occurs outside the macrocyclic cavity via N-H...O=C hydrogen bonds for carboxylate anions and N-H...F hydrogen bonds for the PF(6)(-) anion, which is in agreement with the solution results. The macrocyclic framework adopts different conformations in order to interact with each substrate having Fe...Fe intramolecular distances ranging from 10.125(14) to 12.783(15)A.  相似文献   
58.
Semiempirical and density functional electronic structure theory methods were used to study SWNT-X--R bond strengths, where the single-walled carbon nanotube (SWNT) had an armchair or zigzag structure, the link heteroatom X was O, N(H), or S and the hydrocarbon chain R was CH(2)CH(3), CH(OH)CH(3), CHCH(2), or CH(CF(3))CH(3). In all systems the hydrocarbon was bonded to the end of the nanotube. The SWNT-X--R bond (that is, the bond joining the link atom to the hydrocarbon) is more than 0.4 eV stronger for armchair than for zigzag nanotubes with the same diameters, irrespective of whether O, N, or S are used as link atoms or whether OH, C==C, or CF(3) groups are present in the hydrocarbon chain. This raises the possibility for selective manipulation of armchair/zigzag nanotubes using a variety of link atoms and hydrocarbon structures. The SWNT-O--CH(CF(3))CH(3) bond is weaker than the SWNT-O--CH(2)CH(3) bond (for both armchair and zigzag nanotubes), while inclusion of a double bond in the ethyl chain increases the bond strengths. Also, SWNT-S--CH(2)CH(3) and SWNT-N(H)--CH(2)CH(3) bonds are stronger than SWNT-O--CH(2)CH(3) bonds.  相似文献   
59.
We present a simulation tool to study fluid mixtures that are simultaneously chemically reacting and adsorbing in a porous material. The method is a combination of the reaction ensemble Monte Carlo method and the dual control volume grand canonical molecular dynamics technique. The method, termed the dual control cell reaction ensemble molecular dynamics method, allows for the calculation of both equilibrium and nonequilibrium transport properties in porous materials such as diffusion coefficients, permeability, and mass flux. Control cells, which are in direct physical contact with the porous solid, are used to maintain the desired reaction and flow conditions for the system. The simulation setup closely mimics an actual experimental system in which the thermodynamic and flow parameters are precisely controlled. We present an application of the method to the dry reforming of methane reaction within a nanoscale reactor model in the presence of a semipermeable membrane that was modeled as a porous material similar to silicalite. We studied the effects of the membrane structure and porosity on the reaction species permeability by considering three different membrane models. We also studied the effects of an imposed pressure gradient across the membrane on the mass flux of the reaction species. Conversion of syngas (H2/CO) increased significantly in all the nanoscale membrane reactor models considered. A brief discussion of further potential applications is also presented.  相似文献   
60.
Hyaluronic acid is a naturally occurring linear polysaccharide with substantial medical potential. In this work, discrimination of tyramine‐based hyaluronan derivatives was accessed by ion mobility–mass spectrometry of deprotonated molecules and nuclear magnetic resonance spectroscopy. As the product ion mass spectra did not allow for direct isomer discrimination in mixture, the reductive labeling of oligosaccharides as well as stable isotope labeling was performed. The ion mobility separation of parent ions together with the characteristic fragmentation for reduced isomers providing unique product ions allowed us to identify isomers present in a mixture and determine their mutual isomeric ratio. The determination used simple recalculation of arrival time distribution areas of unique ions to areas of deprotonated molecules. Mass spectrometry data were confirmed by nuclear magnetic resonance spectroscopy. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号