首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   113篇
  免费   0篇
化学   73篇
晶体学   1篇
力学   4篇
数学   1篇
物理学   34篇
  2022年   1篇
  2019年   1篇
  2013年   4篇
  2012年   5篇
  2011年   9篇
  2010年   3篇
  2009年   2篇
  2008年   6篇
  2007年   7篇
  2006年   10篇
  2005年   7篇
  2004年   13篇
  2003年   8篇
  2002年   19篇
  2001年   6篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1994年   2篇
  1993年   2篇
  1992年   4篇
排序方式: 共有113条查询结果,搜索用时 15 毫秒
81.
The structure of water-in-oil microemulsion droplets, stabilized by didodecyldimethylammonium bromide (DDAB), has been investigated by small-angle neutron scattering (SANS). Detailed information about the curved surfactant film has been obtained by selectively deuterating the water, DDAB, and cyclohexane components. For each surfactanth-DDAB andd-DDAB and concentration, three sets of complementary neutron contrast data were analyzed together in terms of a Schultz distribution of core–shell particles. The modeling was consistent with a simple liquid-like surfactant layer, of density 0.80 g cm−3, with no evidence for any solvent penetration. This film thickness was found to be 11–12 Å, about 70% of an all-transC12chain length. At the water interface the area per head was 56–61 Å2, while for the alkyl chains at the outer surface it was 90–125 Å2(15–30% lower than that for a truncated cone molecular configuration). The cyclohexane–water interfacial tensions γo/w, measured by surface light scattering, were used along with the droplet polydispersities to find that the rigidity of the DDAB film, 2K+ is close to 1.0kBT. This means that rather than acting as an effective parameter in the SANS analysis, the polydispersity is a natural consequence of the film rigidity. These results show that the film bending energy model accounts well for the behavior of such DDAB microemulsions.  相似文献   
82.
Electron paramagnetic resonance, viscosity, and small-angle neutron scattering (SANS) measurements have been used to study the interaction of mixed anionic/nonionic surfactant micelles with the polyampholytic protein gelatin. Sodium dodecyl sulfate (SDS) and the nonionic surfactant dodecylmalono-bis-N-methylglucamide (C12BNMG) were chosen as "interacting" and "noninteracting" surfactants, respectively; SDS micelles bind strongly to gelatin but C12BNMG micelles do not. Further, the two surfactants interact synergistically in the absence of the gelatin. The effects of total surfactant concentration and surfactant mole fraction have been investigated. Previous work (Griffiths et al. Langmuir 2000, 16 (26), 9983-9990) has shown that above a critical solution mole fraction, mixed micelles bind to gelatin. This critical mole fraction corresponds to a micelle surface that has no displaceable water (Griffiths et al. J. Phys. Chem. B 2001, 105 (31), 7465). On binding of the mixed micelle, the bulk solution viscosity increases, with the viscosity-surfactant concentration behavior being strongly dependent on the solution surfactant mole fraction. The viscosity at a stoichiometry of approximately one micelle per gelatin molecule observed in SDS-rich mixtures scales with the surface area of the micelle occupied by the interacting surfactant, SDS. Below the critical solution mole fraction, there is no significant increase in viscosity with increasing surfactant concentration. Further, the SANS behavior of the gelatin/mixed surfactant systems below the critical micelle mole fraction can be described as a simple summation of those arising from the separate gelatin and binary mixed surfactant micelles. By contrast, for systems above the critical micelle mole fraction, the SANS data cannot be described by such a simple approach. No signature from any unperturbed gelatin could be detected in the gelatin/mixed surfactant system. The gelatin scattering is very similar in form to the surfactant scattering, confirming the widely accepted picture that the polymer "wraps" around the micelle surface. The gelatin scattering in the presence of deuterated surfactants is insensitive to the micelle composition provided the composition is above the critical value, suggesting that the viscosity enhancement observed arises from the number and strength of the micelle-polymer contact points rather than the gelatin conformation per se.  相似文献   
83.
The small-angle neutron scattering technique is illustrated for a variety of amorphous materials by results obtained on the LOQ instrument at the ISIS pulsed neutron source. The simultaneous use of neutron wavelengths of 2–10 Å is a particular advantage of the pulsed source which gives good results over a wide Q range. Coupled with neutron contrast variation this gives a valuable insight into the structure of materials in the size range 10–1000 Å.  相似文献   
84.
85.
Surface pressure-area isotherm, neutron specular reflection, and small-angle neutron scattering studies have been carried out to determine the effects of added cholesterol and distearoylphosphatidylcholine (DSPC), on the molecular structures of monolayers and vesicles containing the dialkyl polyoxyethylene ether surfactant, 1,2-di-O-octadecyl-rac-glyceryl-3-(alpha-dodecaethylene glycol) (2C18E12). Previous neutron reflectivity studies on 2C18E12 monolayers at the air/water interface have shown them to possess a thickness of approximately 24 angstoms and highly disordered structure with significant intermixing of the polymer headgroups and alkyl chains. SANS studies of 2C18E12 vesicles gave a bilayer thickness of approximately 51 angstroms. Addition of cholesterol to 2C18E12 monolayers (1:1 molar ratio), produced a marked condensing effect coupled with an increased the layer thickness of approximately 7 angstroms, and in vesicles, increased bilayer thickness by approximately 16 angstroms. Monolayers consisting of 2C18E12:DSPC:cholesterol (1:1:2 molar ratio), showed a layer thickness of approximately 31 angstroms, whereas in vesicles, three-component bilayer was found to be only approximately 9 angstroms thicker than those possessed by vesicles composed solely of 2C18E12. Mixing between the molecules in three-component monolayers was shown to be ideal through analysis of the neutron reflectivity data. These findings are discussed in relation to increased ordering and decreased headgroup/hydrophobe intermixing within both monolayers and vesicle bilayers containing 2C18E12. The inferred increase in molecular order within vesicles composed of 2C18E12 with additional cholesterol and phospholipid is used as a model for explaining theoretical differences in bilayer permeability.  相似文献   
86.
87.
Here it is shown that the chemical nature of outer organic surfactant layers, used to stabilize inorganic nanoparticles (NPs), is a key factor controlling solubility in a mixed liquid CO(2)-heptane (10% vol) solvent.  相似文献   
88.
The phase behavior and structure of aqueous-in-n-heptane microemulsions, stabilized by surfactant mixtures of di-n-didodecyldimethylammonium bromide, DDAB, and Brij(R)35 were studied by small angle (neutron or X-ray) scattering techniques. The aqueous nanodroplets contain either a precursor reactive salt or a precipitating agent, so that simple mixing induces nanoparticle formation. These formulated microemulsions display good phase stability against added polar additives such as monovalent, divalent, trivalent metal ions, ammonia solution, tetrabutylammonium hydroxide, and their mixtures. Nanoparticle formation was demonstrated via precipitation of metal oxides inside the water nanodroplets, affording control over the resulting particle size. Nanoparticle characteristic size (XRD- and HR-TEM derived sizes) and specific surface areas (S(BET) (m(2)g(-1))) for iron oxide and CeO(2) prepared in these mixed microemulsions, are compared with those stabilized by single surfactants DDAB and Pure AOT.  相似文献   
89.
Contrast variation small-angle neutron scattering (SANS) has been employed to study complex fluids comprising model microemulsions and polymers. The systems are water-in-oil microemulsions with added non-adsorbing polymer, under good polymer solvency conditions and semidilute polymer concentrations. The polymer/colloid size ratio was q approximately 11, which is well within the "protein limit". Four scattering contrasts were produced by selective deuteration of the dispersed and continuous phases and also the surfactant. In this way, the separate partial structure factors (PSF) for colloid-colloid (c-c), polymer-polymer (p-p), and colloid-polymer (c-p) have been obtained. The c-c PSF has been compared with theoretical predictions, allowing determination of a polymer correlation length. This is compared with a similar correlation length obtained from the p-p PSF, which is shown to increase with colloid concentration. In this sense, adding microemulsion has a similar effect on the dissolved polymer as reducing the solvent quality, and an effective Flory-Huggins chi parameter has been calculated. The cross-term PSF shows a distinct anti-correlation. This is the first time such structure factors have been determined experimentally for colloid-polymer systems in the protein limit and these allow a more detailed understanding of the structural interactions in these systems.  相似文献   
90.
Aggregate structures of two model surfactants, AOT and C12E5 are studied in pure solvents D2O, dioxane-d8 (d-diox) and cyclohexane-d12 (C6D12) as well as in formulated D2O/d-diox and d-diox/C6D12 mixtures. As such these solvents and mixtures span a wide and continuous range of polarities. Small-angle neutron scattering (SANS) has been employed to follow an evolution of the preferred aggregate curvature, from normal micelles in high polarity solvents, through to reversed micelles in low polarity media. SANS has also been used to elucidate the micellar size, shape as well as to highlight intermicellar interactions. The results shed new light on the nature of aggregation structures in intermediate polarity solvents, and point to a region of solvent quality (as characterized by Hildebrand Solubility Parameter, Snyder polarity parameter or dielectric constant) in which aggregation is not favored. Finally these observed trends in aggregation as a function of solvent quality are successfully used to predict the self-assembly behavior of C12E5 in a different solvent, hexane-d14 (C6D14).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号