首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   113篇
  免费   0篇
化学   73篇
晶体学   1篇
力学   4篇
数学   1篇
物理学   34篇
  2022年   1篇
  2019年   1篇
  2013年   4篇
  2012年   5篇
  2011年   9篇
  2010年   3篇
  2009年   2篇
  2008年   6篇
  2007年   7篇
  2006年   10篇
  2005年   7篇
  2004年   13篇
  2003年   8篇
  2002年   19篇
  2001年   6篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1994年   2篇
  1993年   2篇
  1992年   4篇
排序方式: 共有113条查询结果,搜索用时 15 毫秒
11.
The velocity field in the central sagittal plane of an idealized representation of the human oropharynx (HOP) during steady inspiration, simulating oral inhalation through an inhaler mouthpiece, was measured experimentally using endoscopic particle image velocimetry (PIV). Measurements were made at three flow rates: 15, 30, and 90 L/min, which correspond to a wide range of physiological conditions. Extensive tests were performed to verify the veracity of the PIV data. The flow was also modeled computationally using Reynolds-averaged Navier–Stokes (RANS) computational fluid dynamics (CFD) methods. The PIV data clearly indicate the complex nature of HOP flow, with three-dimensionality and several regions of separation and recirculation evident. Comparison of the experimental and computational results shows that, although the RANS CFD reproduces the basic features of the flow, it does not adequately capture the increased viscous effects at lower Reynolds numbers. The results demonstrate the need for more development and validation of CFD modeling, in particular RANS methods, in these flows.  相似文献   
12.

Background  

The archaeal exosome is formed by a hexameric RNase PH ring and three RNA binding subunits and has been shown to bind and degrade RNA in vitro. Despite extensive studies on the eukaryotic exosome and on the proteins interacting with this complex, little information is yet available on the identification and function of archaeal exosome regulatory factors.  相似文献   
13.
14.
Small-angle neutron scattering and surface tension have been used to characterize a class of surfactants (SURFs), including surfactant ionic liquids (SAILs). These SURFs and SAILs are based on organic surfactant anions (single-tail dodecyl sulfate, DS, double-chain aerosol-OT, AOT, and the trichain, TC) with substituted quaternary ammonium cations. This class of surfactants can be obtained by straightforward chemistry, being cheaper and more environmentally benign than standard cationic SAILs. A surprising aspect of the results is that, broadly speaking, the physicochemical properties of these SURFs and SAILs are dominated by the nature of the surfactant anion and that the chemical structure of the added cation plays only a secondary role.  相似文献   
15.
A new class of photoreactive surfactants (PRSs) is presented here, consisting of amphiphiles that can also act as reagents in photochemical reactions. An example PRS is cobalt 2-ethylhexanoate (Co(EH)(2)), which forms reverse micelles (RMs) in a hydrocarbon solvent, as well as mixed reversed micelles with the standard surfactant Aerosol-OT (AOT). Small-angle neutron scattering (SANS) data show that mixed AOT/PRS RMs have a spherical structure and size similar to that of pure AOT micelles. Excitation of the ligand-to-metal charge transfer (LMCT) band in the PRSs promotes electron transfer from PRS to associated metal counterions, leading to the generation of metal and metal-oxide nanoparticles inside the RMs. This work presents proof of concept for employing PRSs as precursors to obtain nearly monodisperse inorganic nanoparticles: here both Co(3)O(4) and Bi nanoparticles have been synthesized at high metal concentration (10(-2) M) by simply irradiating the RMs. These results point toward a new approach of photoreactive self-assembly, which represents a clean and straightforward route to the generation of nanomaterials.  相似文献   
16.
The self-assembly in solution of puroindoline-a (Pin-a), an amphiphilic lipid binding protein from common wheat, was investigated by small angle neutron scattering, dynamic light scattering and size exclusion chromatography. Pin-a was found to form monodisperse prolate ellipsoidal micelles with a major axial radius of 112 ± 4.5 ? and minor axial radius of 40.4 ± 0.18 ?. These protein micelles were formed by the spontaneous self-assembly of 38 Pin-a molecules in solution and were stable over a wide pH range (3.5-11) and at elevated temperatures (20-65 °C). Pin-a micelles could be disrupted upon addition of the non-ionic surfactant dodecyl-β-maltoside, suggesting that the protein self-assembly is driven by hydrophobic forces, consisting of intermolecular interactions between Trp residues located within a well-defined Trp-rich domain of Pin-a.  相似文献   
17.
18.
We report the first observation of a B meson decay that is not accessible by a direct spectator process. The channel B(0)-->D(+)(s)K- is found in a sample of 85 x 10(6) BB; events, collected with the Belle detector at KEKB, with a branching fraction B(B(0)-->D(+)(s)K-)=(4.6(+1.2)(-1.1)+/-1.3) x 10(-5). We also obtain evidence for the B0-->D(+)(s)pi(-) decay with branching fraction B(B0-->D(+)(s)pi(-))=(2.4(+1.0)(-0.8)+/-0.7) x 10(-5). This value may be used to extract a model-dependent value of |V(ub)|.  相似文献   
19.
Encapsulation efficiencies of vesicles formed by the nonionic surfactant 1,2-dioctadecyl-rac-glycerol-3-omega-methoxydodecylethylene glycol (abbreviated as 2C18E12) and its phospholipid counterpart, distearoylphosphatidylcholine (DSPC) at 298 K, were determined by the entrapment of the water-soluble dye, carboxyfluorescein (CF) to be 0.045+/-0.001 and 0.03+/-0.04 L mol(-1) for 2C18E12 vesicles prepared using low osmolarity (270 m Osm) Krebs-Henseleit (K-H) buffer and a modified 'high salt' (1600 m Osm) variant of K-H buffer, respectively, and 0.64+/-0.01 and 0.31+/-0.04 Lmol(-1) for DSPC vesicles prepared under the same conditions and in the same buffers. Freeze fracture electron microscopy studies confirmed the presence of vesicles when 2C18E12 and DSPC were dispersed in water and both buffer solutions. Small angle neutron scattering (SANS) studies, using D2O in place of H2O, showed that when 2C18E12 vesicles were prepared in the 'high salt' variant of K-H buffer as opposed to K-H buffer or water, a higher proportion of multilamellar vesicles (MLV) were formed. Furthermore when prepared in the 'high salt' variant of K-H buffer, the 2C18E12 bilayers were thinner, and when present in the form of MLV exhibited a smaller layer of water separating the bilayers. However, even in the absence of electrolyte, 2C18E12 formed surprisingly thin bilayers due to the penetration of the polyoxyethylene chains into the hydrophobic chain region of the bilayer. Due to the dehydrating effect of the high concentration of electrolyte present in the 'high salt' variant of K-H, the polyoxyethylene head groups penetrated further into the hydrophobic region of the bilayer making the bilayer even thinner. In the case of the DSPC vesicles, although the SANS study showed an increase in the relative proportion of multilamellar to unilamellar vesicles when samples were prepared in the 'high salt' variant of K-H buffer, no differences were observed in the thickness and the d-spacing of the vesicle bilayers. Variable temperature turbidity measurements of 2C18E12, and DSPC vesicles prepared in water indicated phase changes at 320+/-0.5 and 327+/-0.5 K, respectively, and were unchanged when the 'high salt' variant of K-H buffer was used as hydrating medium. Taken together, these results suggest that a low phase transition temperature was not the reason for the poor entrapment efficiency of 2C18E12 vesicles but rather the very 'thin' hydrophobic barrier formed by the penetration of the polyoxyethylene chains into the hydrophobic region of the bilayer.  相似文献   
20.
The extent of aggregation of nonionic surfactants can be controlled by the composition of mixed solvents with two miscible glycols, ethylene glycol (EG)/propylene glycol (PG). Three nonionic surfactants bearing a common E8 ethoxylated headgroup, but with variations in the hydrocarbon chain, have been investigated: octaethylene monododecyl ether (C12E8), octaethylene monotetradecyl ether (C14E8), and octaethylene monohexadecyl ether (C16E8). The hydrogen-bonding solvents were EG/PG mixtures at different PG levels, defined in terms of the concentration (mol %) of PG. Aggregation was investigated using small-angle neutron scattering (SANS) with h-CiE8 surfactants, at 10 and 5 wt %, in deuterated glycol solvents to improve contrast. Increasing PG concentration (mol %) in the background EG/PG solvent leads to a consistent decrease in the SANS intensity, until in pure d-PG only very weak scattering is observed. These SANS data were analyzed using cylinder or ellipsoidal form factors for the EG-rich and PG-rich systems, respectively, hence demonstrating an aggregate shape change as a function of solvent composition. The results show that aggregation of nonionic surfactants occurs in glycol solvents and that the EG:PG ratio may be used as an effective means to switch aggregation "on" or "off", as required.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号