全文获取类型
收费全文 | 235篇 |
免费 | 0篇 |
专业分类
化学 | 195篇 |
力学 | 3篇 |
数学 | 8篇 |
物理学 | 29篇 |
出版年
2022年 | 2篇 |
2021年 | 2篇 |
2020年 | 5篇 |
2019年 | 4篇 |
2018年 | 4篇 |
2017年 | 1篇 |
2016年 | 1篇 |
2015年 | 2篇 |
2014年 | 1篇 |
2013年 | 4篇 |
2012年 | 17篇 |
2011年 | 16篇 |
2010年 | 6篇 |
2009年 | 5篇 |
2008年 | 17篇 |
2007年 | 16篇 |
2006年 | 16篇 |
2005年 | 18篇 |
2004年 | 15篇 |
2003年 | 13篇 |
2002年 | 15篇 |
2001年 | 9篇 |
2000年 | 4篇 |
1999年 | 3篇 |
1998年 | 2篇 |
1997年 | 3篇 |
1996年 | 3篇 |
1994年 | 1篇 |
1993年 | 2篇 |
1992年 | 1篇 |
1991年 | 1篇 |
1990年 | 3篇 |
1988年 | 1篇 |
1986年 | 1篇 |
1984年 | 2篇 |
1983年 | 1篇 |
1982年 | 2篇 |
1981年 | 1篇 |
1980年 | 1篇 |
1979年 | 1篇 |
1978年 | 1篇 |
1977年 | 1篇 |
1976年 | 3篇 |
1975年 | 1篇 |
1974年 | 1篇 |
1973年 | 3篇 |
1972年 | 1篇 |
1971年 | 1篇 |
1937年 | 1篇 |
排序方式: 共有235条查询结果,搜索用时 15 毫秒
221.
Campbell KA Lashley MR Wyatt JK Nantz MH Britt RD 《Journal of the American Chemical Society》2001,123(24):5710-5719
Dual-mode electron paramagnetic resonance (EPR), in which an oscillating magnetic field is alternately applied parallel or perpendicular to the static magnetic field, is a valuable technique for studying both half-integer and integer electron spin systems and is particularly useful for studying transition metals involved in redox chemistry. We have applied this technique to the characterization of the Mn(III) salen (salen = N,N'-ethylene bis(salicylideneaminato)) complex [(R,R)-(-)-N,N'-bis(3,5-di-tert-butylsalicylidene)-1,2-cyclohexanediaminomanganese(III)], with an S = 2 integer electron spin system. Furthermore, we have used dual-mode EPR to study the Mn salen complex during the Mn(III) salen-catalyzed epoxidation of cis-beta-methylstyrene. Our study shows that the additives N-methylmorpholine N-oxide (NMO) and 4-phenylpyridine-N-oxide (4-PPNO), which are used to improve epoxidation yields and enantioselection, bind to the Mn(III) center prior to the epoxidation reaction, as evidenced by the alteration of the Mn(III) parallel mode EPR signal. With these additives as ligands, the axial zero-field splitting values and (55)Mn hyperfine splitting of the parallel mode signal are indicative of an axially elongated octahedral geometry about the Mn(III) center. Since the dual-mode EPR technique allows the observation of both integer and half-integer electron spin systems, Mn oxidation states of II, III, IV, and potentially V can be observed in the same sample as well as any radical intermediates or Mn(III,IV) dinuclear clusters formed during the Mn(III) salen-catalyzed epoxidation reaction. Indeed, our study revealed the formation of a Mn(III,IV) dinuclear cluster in direct correlation with expoxide formation. In addition to showing the possible reaction intermediates, dual-mode EPR offers insight into the mechanism of catalyst degradation and formation of unwanted byproducts. The dual-mode technique may therefore prove valuable for elucidating the mechanism of Mn(III) salen catalyzed reactions and ultimately for designing optimum catalytic conditions (solvents, oxidants, and additives such as NMO or 4-PPNO). 相似文献
222.
Boström E Jansson B Hammarlund-Udenaes M Simonsson US 《Rapid communications in mass spectrometry : RCM》2004,18(21):2565-2576
Sensitive and reproducible methods for the determination of oxycodone, oxymorphone and noroxycodone in Ringer solution, rat plasma and rat brain tissue by liquid chromatography/mass spectrometry are described. Deuterated analogs of the substances were used as internal standards. Samples in Ringer solution were analyzed by direct injection of 10 microL Ringer solution diluted by an equal volume of water. The limit of quantification was 0.5 ng/mL and the method was linear in the range of 0.5-150 ng/mL for all substances. To analyze oxycodone and oxymorphone in rat plasma, 50 microL of plasma were precipitated with acetonitrile, and the supernatant was directly injected onto the column. To analyze oxycodone, oxymorphone and noroxycodone in rat plasma, 100 microL of rat plasma were subjected to a C18 solid-phase extraction (SPE) procedure, before reconstituting in mobile phase and injection onto the column. For both methods the limit of quantification in rat plasma was 0.5 ng/mL and the methods were linear in the range of 0.5-250 ng/mL for all substances. To analyze the content of oxycodone, oxymorphone and noroxycodone in rat brain tissue, 100 microL of the brain homogenate supernatant were subjected to a C18 SPE procedure. The limit of quantification of oxycodone was 20 ng/g brain, and for oxymorphone and noroxycodone 4 ng/g brain, and the method was linear in the range of 20-1000 ng/g brain for oxycodone and 4-1000 ng/g brain for oxymorphone and noroxycodone. All methods utilized a mobile phase of 5 mM ammonium acetate in 45% acetonitrile, and a SB-CN column was used for separation. The total run time of all methods was 9 min. The intra-day precision and accuracy were <11.3% and <+/-14.9%, respectively, and the inter-day precision and accuracy were <14.9% and <+/-6.5%, respectively, for all the concentrations and matrices described. 相似文献
223.
Dey A Glaser T Couture MM Eltis LD Holm RH Hedman B Hodgson KO Solomon EI 《Journal of the American Chemical Society》2004,126(26):8320-8328
Sulfur K-edge X-ray absorption spectroscopy (XAS) is reported for [Fe(4)S(4)](1+,2+,3+) clusters. The results are quantitatively and qualitatively compared with DFT calculations. The change in covalency upon redox in both the [Fe(4)S(4)](1+/2+) (ferredoxin) and the [Fe(4)S(4)](2+/3+) (HiPIP) couple are much larger than that expected from just the change in number of 3d holes. Moreover, the change in the HiPIP couple is higher than that of the ferredoxin couple. These changes in electronic structure are analyzed using DFT calculations in terms of contributions from the nature of the redox active molecular orbital (RAMO) and electronic relaxation. The results indicate that the RAMO of HiPIP has 50% ligand character, and hence, the HiPIP redox couple involves limited electronic relaxation. Alternatively, the RAMO of the ferredoxin couple is metal-based, and the ferredoxin redox couple involves extensive electronic relaxation. The contributions of these RAMO differences to ET processes in the different proteins are discussed. 相似文献
224.
Cefuroxime is a second-generation cephalosporin used against different kinds of bacterial infections. To be able to optimize the dosing it is necessary to characterize the pharmacokinetics of cefuroxime which requires a selective and sensitive analytical method for cefuroxime in plasma or serum. A new rapid liquid chromatography/electrospray tandem mass spectrometry (LC/MS/MS) method, using cefotaxime as internal standard, was developed for analysis of cefuroxime in human serum. The work-up procedure consisted of protein precipitation with acetonitrile/cefotaxime, and after centrifugation the supernatant was dissolved in mobile phase. The sample was injected on a SB-CN column and the detection was performed using tandem mass spectrometry (MS/MS). The limit of quantification was determined to 0.025 microg/mL. The method was linear in the range 0.025-50 microg/mL with a coefficient of correlation >0.999. The limit of quantification and intra-day variability were found to be the same for plasma samples, which indicates that the method is valid for serum as well as plasma samples. 相似文献
225.
Xie X Gorelsky SI Sarangi R Garner DK Hwang HJ Hodgson KO Hedman B Lu Y Solomon EI 《Journal of the American Chemical Society》2008,130(15):5194-5205
226.
Wasinger EC Davis MI Pau MY Orville AM Zaleski JM Hedman B Lipscomb JD Hodgson KO Solomon EI 《Inorganic chemistry》2003,42(2):365-376
The geometric and electronic structure of NO bound to reduced protocatechuate 3,4-dioxygenase and its substrate (3,4-dihydroxybenzoate, PCA) complex have been examined by X-ray absorption (XAS), UV-vis absorption (Abs), magnetic circular dichroism (MCD), and variable temperature variable field (VTVH) MCD spectroscopies. The results are compared to those previously published on model complexes described as [FeNO]7 systems in which an S = 5/2 ferric center is antiferromagnetically coupled to an S = 1 NO-. XAS pre-edge analysis indicates that the Fe-NO units in FeIIIPCD[NO-] and FeIIIPCD[PCA,NO-] lack the greatly increased pre-edge intensity representative of most [FeNO]7 model sites. Furthermore, from extended X-ray absorption fine structure (EXAFS) analysis, the FeIIIPCD[NO-] and FeIIIPCD[PCA,NO-] active sites are shown to have an Fe-NO distance of at least 1.91 A, approximately 0.2 A greater than those found in the model complexes. The weakened Fe-NO bond is consistent with the overall lengthening of the bond lengths and the fact that VTVH MCD data show that NO(-)-->FeIII CT transitions are no longer polarized along the z-axis of the zero-field splitting tensor. The weaker Fe-NO bond derives from the strong donor interaction of the endogenous phenolate and substrate catecholate ligands, which is observed from the increased intensity in the CT region relative to that of [FeNO]7 model complexes, and from the shift in XAS edge position to lower energy. As NO is an analogue of O2, the effect of endogenous ligand donor strength on the Fe-NO bond has important implications with respect to O2 activation by non-heme iron enzymes. 相似文献
227.
Vogt M Lahiri S Hoogstraten CG Britt RD DeRose VJ 《Journal of the American Chemical Society》2006,128(51):16764-16770
Although site-bound Mg2+ ions have been proposed to influence RNA structure and function, establishing the molecular properties of such sites has been challenging due largely to the unique electrostatic properties of the RNA biopolymer. We have previously determined that, in solution, the hammerhead ribozyme (a self-cleaving RNA) has a high-affinity metal ion binding site characterized by a K(d,app) < 10 microM for Mn2+ in 1 M NaCl and speculated that this site has functional importance in the ribozyme cleavage reaction. Here we determine both the precise location and the hydration level of Mn2+ in this site using ESEEM (electron spin-echo envelope modulation) spectroscopy. Definitive assignment of the high-affinity site to the activity-sensitive A9/G10.1 region is achieved by site-specific labeling of G10.1 with 15N guanine. The coordinated metal ion retains four water ligands as measured by 2H ESEEM spectroscopy. The results presented here show that a functionally important, specific metal binding site is uniquely populated in the hammerhead ribozyme even in a background of high ionic strength. Although it has a relatively high thermodynamic affinity, this ion remains partially hydrated and is chelated to the RNA by just two ligands. 相似文献
228.
Jan Hedman Yves Baer Anders Berndtsson Martin Klasson Gunter Leonhardt Roy Nilsson Carl Nordling 《Journal of Electron Spectroscopy and Related Phenomena》1973,1(1):101-104
An energy difference of 1.0 eV has been found between the silicon 2p electron peaks in the electron spectra from heavily doped silicon of n- and p- 相似文献
229.
L-edge X-ray absorption spectroscopy of non-heme iron sites: experimental determination of differential orbital covalency 总被引:1,自引:0,他引:1
Wasinger EC de Groot FM Hedman B Hodgson KO Solomon EI 《Journal of the American Chemical Society》2003,125(42):12894-12906
X-ray absorption spectroscopy has been utilized to obtain the L-edge multiplet spectra for a series of non-heme ferric and ferrous complexes. Using these data, a methodology for determining the total covalency and the differential orbital covalency (DOC), that is, differences in covalency in the different symmetry sets of the d orbitals, has been developed. The integrated L-edge intensity is proportional to the number of one-electron transition pathways to the unoccupied molecular orbitals as well as to the covalency of the iron site, which reduces the total L-edge intensity and redistributes intensity, producing shake-up satellites. Furthermore, differential orbital covalency leads to differences in intensity for the different symmetry sets of orbitals and, thus, further modifies the experimental spectra. The ligand field multiplet model commonly used to simulate L-edge spectra does not adequately reproduce the spectral features, especially the charge transfer satellites. The inclusion of charge transfer states with differences in covalency gives excellent fits to the data and experimental estimates of the different contributions of charge transfer shake-up pathways to the t(2g) and e(g) symmetry orbitals. The resulting experimentally determined DOC is compared to values calculated from density functional theory and used to understand chemical trends in high- and low-spin ferrous and ferric complexes with different covalent environments. The utility of this method toward problems in bioinorganic chemistry is discussed. 相似文献
230.