Reactions of Mn(II)(PF(6))(2) and Mn(II)(O(2)CCH(3))(2).4H(2)O with the tridentate facially capping ligand N,N-bis(2-pyridylmethyl)ethylamine (bpea) in ethanol solutions afforded the mononuclear [Mn(II)(bpea)](PF(6))(2) (1) and the new binuclear [Mn(2)(II,II)(mu-O(2)CCH(3))(3)(bpea)(2)](PF(6)) (2) manganese(II) compounds, respectively. Both 1 and 2 were characterized by X-ray crystallographic studies. Complex 1 crystallizes in the monoclinic system, space group P2(1)/n, with a = 11.9288(7) A, b = 22.5424(13) A, c =13.0773(7) A, alpha = 90 degrees, beta = 100.5780(10 degrees ), gamma = 90 degrees, and Z = 4. Crystals of complex 2 are orthorhombic, space group C222(1), with a = 12.5686(16) A, b = 14.4059(16) A, c = 22.515(3) A, alpha = 90 degrees, beta = 90 degrees, gamma = 90 degrees, and Z = 4. The three acetates bridge the two Mn(II) centers in a mu(1,3) syn-syn mode, with a Mn-Mn separation of 3.915 A. A detailed study of the electrochemical behavior of 1 and 2 in CH(3)CN medium has been made. Successive controlled potential oxidations at 0.6 and 0.9 V vs Ag/Ag(+) for a 10 mM solution of 2 allowed the selective and nearly quantitative formation of [Mn(III)(2)(mu-O)(mu-O(2)CCH(3))(2)(bpea)(2)](2+) (3) and [Mn(IV)(2)(mu-O)(2)(mu-O(2)CCH(3))(bpea)(2)](3+) (4), respectively. These results have shown that each substitution of an acetate group by an oxo group is induced by a two-electron oxidation of the corresponding dimanganese complexes. Similar transformations have been obtained if 2 is formed in situ either by direct mixing of Mn(2+) cations, bpea ligand, and CH(3)COO(-) anions with a 1:1:3 stoichiometry or by mixing of 1 and CH(3)COO(-) with a 1:1.5 stoichiometry. Associated electrochemical back-transformations were investigated. 2, 3, and the dimanganese [Mn(III)Mn(IV)(mu-O)(2)(mu-O(2)CCH(3))(bpea)(2)](2+) analogue (5) were also studied for their ability to disproportionate hydrogen peroxide. 2 is far more active compared to 3 and 5. The EPR monitoring of the catalase-like activity has shown that the same species are present in the reaction mixture albeit in slightly different proportions. 2 operates probably along a mechanism different from that of 3 and 5, and the formation of 3 competes with the disproportionation reaction catalyzed by 2. Indeed a solution of 2 exhibits the same activity as 3 for the disproportionation reaction of a second batch of H(2)O(2) indicating that 3 is formed in the course of the reaction. 相似文献
Cocrystallization of a polyimidazole compound with boric acid results in the formation of the title compound, C15H21N7·B(OH)3, which has an extensive hydrogen‐bonding network. The O?N(im) separations (im is imidazole) range from 2.6991 (15) to 2.7914 (14) Å, with O—H?N angles ranging from 170.6 (18) to 175 (2)°. In addition, symmetry‐related boric acid molecules form intermolecular hydrogen bonds, with an O?O distance of 2.7582 (14) Å, and symmetry‐related imidazole groups form π–π stacks, with a centroid‐to‐centroid separation of 3.533 Å. 相似文献
A theoretical study of SiH(4) activation by Cp(2)LnH complexes for the entire series of lanthanides has been carried out at the DFT-B3PW91 level of theory. The reaction paths corresponding to H/H exchange and silylation, formation of Cp(2)Ln(SiH(3)), have been computed. They both occur via a single-step sigma-bond metathesis mechanism. For the athermal H/H exchange reaction, the calculated activation barrier averages 1.8 kcal.mol(-)(1) relative to the precursor adduct Cp(2)LnH(eta(2)-SiH(4)) for all lanthanide elements. The silylation path is slightly exogenic (DeltaE approximately -6.5 kcal.mol(-1)) with an activation barrier averaging 5.2 kcal.mol(-1) relative to the precursor adduct where SiH(4) is bonded by two Si-H bonds. Both pathways are therefore thermally accessible. The H/H exchange path is calculated to be kinetically more favorable whereas the silylation reaction is thermodynamically preferred. The reactivity of this familly of lanthanide complexes with SiH(4) contrasts strongly with that obtained previously with CH(4). The considerably lower activation barrier for silylation relative to methylation is attributed to the ability of Si to become hypervalent. 相似文献
A remarkable stereoselective reaction of methylglyoxal with 2-aminopyridine, the nucleic base adenine and adenine nucleosides leads in good yield to heterocycles of a new family in water under mild conditions and should be of interest in the understanding of the biological effects of methylglyoxal which is toxic, mutagenic and involved in diabetic complications. 相似文献
Modification of the structure of a porphyrin dye shows a significant change in the rate of charge recombination between injected electrons in the TiO2 and the oxidized dye anchored to it following optical excitation, offering an insight into fundamental understanding of processes occurring at the dye/semiconductor interface. 相似文献
Two-dimensional Fourier transform ion cyclotron resonance mass spectrometry (2D FT-ICR MS) allows data-independent fragmentation of all ions in a sample and correlation of fragment ions to their precursors through the modulation of precursor ion cyclotron radii prior to fragmentation. Previous results show that implementation of 2D FT-ICR MS with infrared multi-photon dissociation (IRMPD) and electron capture dissociation (ECD) has turned this method into a useful analytical tool. In this work, IRMPD tandem mass spectrometry of calmodulin (CaM) has been performed both in one-dimensional and two-dimensional FT-ICR MS using a top-down and bottom-up approach. 2D IRMPD FT-ICR MS is used to achieve extensive inter-residue bond cleavage and assignment for CaM, using its unique features for fragment identification in a less time- and sample-consuming experiment than doing the same thing using sequential MS/MS experiments.
In this paper, we investigate the properties of porous structures anodically grown onto n-InP (100) in HCl. In situ electrochemical characterizations show the pore morphology strongly influences the properties of the InP surfaces. Both dc- and ac-electrochemical measurements reveal an enhancement of the capacitive current and a modification of the electronic distribution at the interface. Photocurrent spectra performed during the pore growth are also strongly modified. For low anodic charges, an increase of the photocurrent with a redshift of the absorption edge is measured. These evolutions can be respectively ascribed (i) to a reflection decrease due to a surface roughening and (ii) to the creation of surface states within the band gap. For higher anodic charges, the photocurrent drops with a narrowing of the spectrum. Using a model based on the “dead” layer, the porous layer is considered as an absorbent film that progressively attenuates the photocurrent of the bulk semiconductor. 相似文献
Bulk glasses of the series (1 ? x)[0.5K2O–0.1B2O3–0.4P2O5]–xNb2O5 with x = 0–45.7 mol% Nb2O5 were prepared by slow cooling in air and investigated by Raman, 31P, and 11B MAS NMR spectroscopy. The incorporation of Nb2O5 into the parent borophosphate glass results in a substantial increase in the glass transition temperature and chemical durability of glasses. Raman spectra showed that Nb atoms form distorted NbO6 octahedra, which are isolated at low Nb2O5 content, whereas at higher Nb2O5 content they form clusters. 11B NMR spectra of the glasses revealed the interaction between Nb2O5 and BO4 tetrahedral units, which results in a partial transformation of tetrahedral BO4 units to trigonal BO3 units and the formation of mixed B(OP)4?n(ONb)n units. 相似文献
The electrochemical behavior in alkaline solution (1 M NaOH) of nanocrystalline Ti:Ru:Fe:O (2:1:1:2) prepared by high-energy ball milling was studied over its whole electroactivity domain, with a particular emphasis on the hydrogen evolution reaction (her). Comparison has also been made with nanocrystalline Ti:Ru:Fe (2:1:1) and a mixture of Ti:TiO:Ru:Fe2O3 (3/2:1/2:1:1/2). It was shown by cyclic voltammetry, open circuit potential decay and chronopotentiometry measurements that hydrogen absorption in the electrode material occurs during hydrogen discharge. The electrochemical behavior of nanocrystalline Ti:Ru:Fe:O (2:1:1:2) closely follows that of Ti:Ru:Fe (2:1:1), but differs radically from that of Ti:TiO:Ru:Fe2O3 (3/2:1/2:1:1/2). This is due to the fact that the former two compounds contain a significant fraction of B2 phase (59 and 97 wt.%, respectively), while the latter does not. In steady state conditions, the ratio H/B2 phase in nanocrystalline Ti:Ru:Fe:O (2:1:1:2) is 0.15, about 1.6 times less than that for the O-free nanocrystalline compound. The coefficient of diffusion of hydrogen in nanocrystalline Ti:Ru:Fe:O (2:1:1:2) is 2.6×10−13 cm2 s−1, more than three times less than that in nanocrystalline Ti:Ru:Fe (2:1:1). The difference between the hydrogen absorption characteristics of both nanocrystalline compounds are tracked down to the fact that their B2 phases have different stoichiometries. 相似文献