首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39篇
  免费   1篇
化学   38篇
数学   2篇
  2022年   1篇
  2020年   2篇
  2016年   2篇
  2015年   6篇
  2014年   1篇
  2013年   1篇
  2011年   4篇
  2009年   3篇
  2008年   4篇
  2007年   2篇
  2004年   3篇
  2002年   7篇
  1970年   1篇
  1969年   3篇
排序方式: 共有40条查询结果,搜索用时 109 毫秒
11.
Osmium tetroxide complexes with nitrogen ligands [Os(VIII)L] have been widely applied as probes of the DNA structure and as electroactive labels of DNA. Here we describe the electrochemical behavior of Os(VIII)2,2‐bipyridine (Os, bipy)‐base‐labeled nucleosides. We show that electroactive label can be introduced also in the nucleoside ribose residues using six‐valent osmium complex. Cyclic voltammograms of sugar‐Os(VI)‐modified ribosides are similar but not identical to those of the base‐modified ribosides. Our results showing the electroactivity of sugar modified ribosides pave the way to facile end‐labeling of RNA.  相似文献   
12.
In most of the currently developed electrochemical DNA hybridization sensors short single-stranded probe DNA is immobilized on an electrode and both the hybridization and detection steps are carried out on the electrode surface. Here we use a new technology in which DNA hybridization is performed on commercially available magnetic beads and detection on solid electrodes. Paramagnetic Dynabeads Oligo(dT)25 (DBT) with covalently bound (dT)25 probe are used for the hybridization with target DNA containing adenine stretches. Target DNA is modified with osmium tetroxide,2,2′-bipyridine (Os,bipy) and the immunogenic DNA-Os,bipy adduct is determined by the enzyme-linked immunoassay with electrochemical detection. Electroinactive 1-naphthyl phosphate is used as a substrate and the electroactive product (1-naphthol) is measured on the carbon electrodes. Alternatively Os,bipy-modified target DNA can be determined directly by measuring the osmium signal on the pyrolytic graphite electrode (PGE). A comparison between determinations of the 67-mer oligodeoxynucleotide on carbon electrodes using (a) the guanine oxidation signal, (b) direct determination of the DNA-Os,bipy adduct and (c) its electrochemical immunoassay showed immunoassay to be the most sensitive method. In combination with DBT, the DNA hybridization of long target deoxyoligonucleotides (such as 67- and 97-mers) and a DNA PCR product (226-base pairs) have been detected by immunoassay at high sensitivity and specificity.  相似文献   
13.
Mercury film electrodes (MFE) have recently been used in nucleic acid electrochemical analysis as alternatives to the classical mercury drop ones. DNA modified with osmium tetroxide, 2,2'-bipyridine (Os,bipy) can be detected with a high sensitivity at mercury electrodes via measurements of a catalytic osmium signal. In this paper we show that mercury film on a glassy carbon electrode can be used in voltammetric analysis of Os,bipy-modified DNA. Application of the MFE as a detection electrode in double-surface electrochemical DNA hybridization assay involving osmium labeling of target DNA is demonstrated.  相似文献   
14.
15.
Supercoiled (sc) DNA immobilized at the surface of a hanging mercury drop electrode was cleaved by reactive oxygen species generated by an electrochemically modulated reaction of copper ions, hydrogen peroxide and/or oxygen. The cleavage was observed in a certain potential region where redox cycling of DNA-bound Cu(II)/Cu(I) took place. In the presence of 1,10-phenanthroline the maximum efficiency of DNA cleavage was shifted to more negative potentials and the effect was enhanced.  相似文献   
16.
Reduction potentials of several M(2+/3+) (M = Ru, Os) octahedral complexes, namely, [M(H2O)6](2+/3+), [MCl6](4-/3-), [M(NH3)6](2+/3+), [M(en)3](2+/3+) [M(bipy)3](2+/3+), and [M(CN)6](4-/3-), were calculated using the CASSCF/CASPT2/CASSI and MRCI methods including spin-orbit coupling (SOC) by means of first-order quasi-degenerate perturbation theory. It was shown that the effect of SOC accounts for a systematic shift of approximately -70 mV in the reduction potentials of the studied ruthenium (II/III) complexes and an approximately -300 mV shift for the osmium(II/III) complexes. SOC splits the sixfold-degenerate (2)T(2g) ground electronic state (in ideal octahedral symmetry) of the M(3+) ions into the E((5/2)g) Kramers doublet and G((3/2)g) quartet, which were calculated to split by 1354-1573 cm(-1) in the Ru(3+) complexes and 4155-5061 cm(-1) in the Os(3+) complexes. It was demonstrated that this splitting represents the main contribution to the stabilization of the M(3+) ground state with respect to the closed-shell (1)A(1g) ground state in M(2+) systems. Moreover, it was shown that the accuracy of the calculated reduction potentials depends on the calculated solvation energies of both the oxidized and reduced forms. For smaller ligands, it involves explicit inclusion of the second solvation sphere into the calculations, whereas implicit solvation models yield results of sufficient accuracy for complexes with larger ligands. In such cases (e.g., [M(bipy)3](2+/3+) and its derivatives), very good agreement between the calculated (SOC-corrected) values of the reduction potentials and the available experimental values was obtained. These results led us to the conclusion that especially for Os(2+/3+) complexes, inclusion of SOC is necessary to avoid systematic errors of approximately 300 mV in the calculated reduction potentials.  相似文献   
17.
Earlier, we showed that using differential pulse cathodic stripping voltammetry with hanging mercury drop electrode (HMDE), single-stranded (ss) DNA modified with osmium tetroxide, pyridine reagent (Os,py) can be determined at concentrations down to about 10-5 ng/ml. Here, we show that by exchanging Os,py for osmium tetroxide, 2,2'-bipyridine (Os,bipy) and decreasing the pH of the background electrolyte from neutrality to about pH 4, ssDNA can be determined at concentrations lower by one order of magnitude. Determination of DNA at such low concentrations may find use in various areas of molecular biology and in biotechnologies, including the development of DNA sensors.  相似文献   
18.
19.
Ex situ (adsorptive transfer stripping) electrochemical techniques in connection with basal‐plane PGE have been applied to the study of redox and catalytic properties of doxorubicin (DOX). Cyclic and square‐wave voltammetry and constant current chronopotentiometric stripping (CPS) analysis were used to follow reversible reduction of DOX quinone moiety around ?0.5 V and its coupling to catalytic oxygen reduction. CPS was for the first time used for sensitive ex situ determination of the DOX using the catalytic signal around ?0.5 V in the presence of oxygen, allowing detection of femtomole amounts of DOX. We show that specific interaction of DOX with double‐stranded DNA can easily be monitored using the catalytic CPS signal.  相似文献   
20.
Three sets of 7-deazaadenine and cytosine nucleosides and nucleoside triphosphates bearing either unsubstituted ferrocene, octamethylferrocene and ferrocenecarboxamide linked through an alkyne tether to position 7 or 5, respectively, were designed and synthesized. The modified dNFcXTP s were good substrates for KOD XL DNA polymerase in primer extension and were used for enzymatic synthesis of redox-labelled DNA probes. Square-wave voltammetry showed that the octamethylferrocene oxidation potential was shifted to lower values, whilst the ferrocenecarboxamide was shifted to higher potentials, as compared to ferrocene. Tailed PEX products containing different ratios of Fc-labelled A ( dAFc ) and FcPa-labelled C ( dCFcPa ) were synthesized and hybridized with capture oligonucleotides immobilized on gold electrodes to study the electrochemistry of the redox-labelled DNA. Clearly distinguishable, fully orthogonal and ratiometric peaks were observed for the dAFc and dCFcPa bases in DNA, demonstrating their potential for use in redox coding of nucleobases and for the direct electrochemical measurement of the relative ratio of nucleobases in an unknown sequence of DNA.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号