首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   357篇
  免费   16篇
  国内免费   2篇
化学   179篇
晶体学   10篇
力学   30篇
综合类   1篇
数学   64篇
物理学   91篇
  2023年   3篇
  2022年   10篇
  2021年   18篇
  2020年   7篇
  2019年   12篇
  2018年   10篇
  2017年   13篇
  2016年   18篇
  2015年   14篇
  2014年   18篇
  2013年   40篇
  2012年   27篇
  2011年   32篇
  2010年   33篇
  2009年   28篇
  2008年   16篇
  2007年   13篇
  2006年   13篇
  2005年   9篇
  2004年   6篇
  2003年   5篇
  2002年   2篇
  2001年   2篇
  2000年   1篇
  1999年   6篇
  1998年   1篇
  1997年   2篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1991年   1篇
  1990年   1篇
  1986年   2篇
  1985年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1976年   2篇
排序方式: 共有375条查询结果,搜索用时 15 毫秒
11.
The performance of single-, double- and triple-chain anionic sulphosuccinate surfactants for dispersing multiwall carbon nanotubes (MWNCTs) in natural rubber latex (NR-latex) was studied using a range of techniques, including field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA) and Raman spectroscopy. The conductivities of the nanocomposites were also investigated using four-point probe measurements. Here, MWCNTs were efficiently dispersed in NR-latex with the aid of hyperbranched tri-chain sulphosuccinate anionic surfactants, specifically sodium 1,4-bis(neopentyloxy)-3-(neopentyloxycarbonyl)-1,4-dioxobutane-2-sulphonate (TC14). This paper highlights that TC14 performs much better than that of the commercially available surfactant sodium dodecyl sulphate (SDS), demonstrating how careful consideration of surfactant architecture leads to improved dispersibility of MWCNTs in NR-latex. The results should be of significant interest for improving nanowiring applications suitable for aerospace-based technology.  相似文献   
12.
Biomolecules undergo motions on the micro-to-millisecond timescale to adopt low-populated transient states that play important roles in folding, recognition, and catalysis. NMR techniques, such as Carr–Purcell–Meiboom–Gill (CPMG), chemical exchange saturation transfer (CEST), and R are the most commonly used methods for characterizing such transitions at atomic resolution under solution conditions. CPMG and CEST are most effective at characterizing motions on the millisecond timescale. While some implementations of the R experiment are more broadly sensitive to motions on the micro-to-millisecond timescale, they entail the use of selective irradiation schemes and inefficient 1D data acquisition methods. Herein, we show that high-power radio-frequency fields can be used in CEST experiments to extend the sensitivity to faster motions on the micro-to-millisecond timescale. Given the ease of implementing high-power fields in CEST, this should make it easier to characterize micro-to-millisecond dynamics in biomolecules.  相似文献   
13.
Biomolecules undergo motions on the micro‐to‐millisecond timescale to adopt low‐populated transient states that play important roles in folding, recognition, and catalysis. NMR techniques, such as Carr–Purcell–Meiboom–Gill (CPMG), chemical exchange saturation transfer (CEST), and R are the most commonly used methods for characterizing such transitions at atomic resolution under solution conditions. CPMG and CEST are most effective at characterizing motions on the millisecond timescale. While some implementations of the R experiment are more broadly sensitive to motions on the micro‐to‐millisecond timescale, they entail the use of selective irradiation schemes and inefficient 1D data acquisition methods. Herein, we show that high‐power radio‐frequency fields can be used in CEST experiments to extend the sensitivity to faster motions on the micro‐to‐millisecond timescale. Given the ease of implementing high‐power fields in CEST, this should make it easier to characterize micro‐to‐millisecond dynamics in biomolecules.  相似文献   
14.
Abstract

A drimane-type sesquiterpene, (+)-dendocarbin L (1) together with two bisabolane-type sesquiterpenes, (+)-sydonic acid (2) and (+)-sydowic acid (3) were isolated from the mycelium of Pestalotiopsis microspora HF 12440, an endophytic fungus from the stem of Artocarpus heterophyllus. The structures of all compounds were elucidated using spectroscopic methods and by comparison with the literature. Compound 1 was isolated from the fungi for the first time, compounds 2 and 3 were firstly obtained from this endophytic fungus. Compound 3 showed cytotoxicity (IC50 2.56?μg/mL) against murine leukemia P-388 cells.  相似文献   
15.
We give shorter proofs of the following known results: the radial Dunkl process associated with a reduced system and a strictly positive multiplicity function is the unique strong solution for all times t of a stochastic differential equation with a singular drift, the first hitting time of the Weyl chamber by a radial Dunkl process is finite almost surely for small values of the multiplicity function. The proof of the first result allows one to give a positive answer to a conjecture announced by Gallardo–Yor while that of the second shows that the process hits almost surely the wall corresponding to the simple root with a small multiplicity value. To cite this article: N. Demni, C. R. Acad. Sci. Paris, Ser. I 347 (2009).  相似文献   
16.
In this paper, the homotopy analysis method is applied to solve linear and nonlinear fractional initial-value problems (fIVPs). The fractional derivatives are described by Caputo’s sense. Exact and/or approximate analytical solutions of the fIVPs are obtained. The results of applying this procedure to the studied cases show the high accuracy and efficiency of the approach.  相似文献   
17.
In this paper, a new dynamic model is presented for the experimental data generated by the Madison Symmetric Torus (MST) machine. The model is based on a modified sine-Gordon (SG) dynamic equation. The modified sine-Gordon equation model effectively captures the behavior of the slinky mode in reversed-field pinch experiments. In addition, this paper demonstrates how the derived model accurately describes the behavior of the localized magnetohydrodynamic mode (slinky mode) that appears in reversed-field pinch toroidal magnetic confinement systems. The modified SG equation model is solved analytically by using the perturbation method. The resulting model is fit to match a variety of experimental results in the MST reversed-field pinch experiment. The efficacy of the newly developed model in effectively representing the slinky mode is verified by comparing obtained analytical solution to experimentally measured data.  相似文献   
18.
Nanosized cobalt ferrite spinel particles have been prepared by using mechanically alloyed nanoparticles. The effects of various preparation parameters on the crystallite size of cobalt ferrite which includes milling time; ball-to powder weight ratio (BPR) and sintering temperature, were studied using X-ray diffractometer (XRD). Scherrer's equation was used to study the crystallite size evolution of the as-prepared materials. The results of the as-milled sample revealed that both milling time and BPR plays a role in determining the crystallite size of the milled powder. However, where sintering is involved, the sintering temperature results in grain growth, and thus plays a dominant role in determining the final crystallite size of the samples sintered at higher temperature (above 900 °C). From the vibrating-sample magnetometer (VSM) measurement it was observed that the coercivity of the as-milled samples without sintering is almost negligible, which is a type characteristic of superparamagnetic material. However, for the sintered samples, the saturation increases while coercivity decreases with increases sintering temperature.  相似文献   
19.
Feedback control on thermal convection in a fluid-saturated porous medium is investigated based on the dynamical systems approach. A low dimensional Lorenz-like model was obtained using the Galerkin-truncated approximation. The possible suppression or enhancement of chaotic convection is demonstrated when the fluid layer is subjected to feedback control in a low-dimensional framework.  相似文献   
20.
Photopyroelectric spectroscopy is used to study the band-gap energy of the ceramic (ZnO + xSb2O3), x = 0.1 - 1.5 mol% and the ceramic (ZnO + 0.4 mol%  Bi2O3 + xSb2O3), x = 0 - 1.5 mol% sintered at isothermal temperature, 1280 °C, for 1 and 2 hours. The wavelength of incident light, modulated at 9 Hz, is kept in the visible range and the photopyroelectric spectrum with reference to doping level is discussed. The band-gap energy is reduced from 3.2 eV, for pure ZnO, to 2.86, 2.83 eV for the samples without Bi2O3at 0.1 mol% of Sb2O3 for 1 and 2 hours of sintering time, respectively. It is reduced to 2.83, 2.80 eV for the samples with Bi2O3 at 0 mol% of Sb2O3 for 1 and 2 hours of sintering time, respectively. The steepness factor σA which characterizes the slop of exponential optical absorption is discussed with reference to the doping level. The phase constitution is determined by XRD analysis; microstructure and compositional analysis of the selected areas are analyzed using SEM and EDX.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号