首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1085篇
  免费   9篇
  国内免费   6篇
化学   676篇
晶体学   13篇
力学   16篇
数学   151篇
物理学   244篇
  2020年   14篇
  2019年   12篇
  2018年   9篇
  2017年   10篇
  2016年   12篇
  2015年   14篇
  2014年   21篇
  2013年   49篇
  2012年   44篇
  2011年   68篇
  2010年   31篇
  2009年   20篇
  2008年   44篇
  2007年   52篇
  2006年   49篇
  2005年   52篇
  2004年   55篇
  2003年   39篇
  2002年   38篇
  2001年   20篇
  2000年   22篇
  1999年   13篇
  1998年   15篇
  1997年   16篇
  1996年   17篇
  1995年   7篇
  1994年   12篇
  1993年   19篇
  1992年   11篇
  1991年   15篇
  1990年   8篇
  1989年   11篇
  1988年   10篇
  1987年   7篇
  1986年   7篇
  1985年   13篇
  1984年   21篇
  1983年   14篇
  1982年   8篇
  1981年   16篇
  1980年   12篇
  1979年   7篇
  1978年   10篇
  1977年   14篇
  1976年   15篇
  1975年   18篇
  1974年   17篇
  1973年   11篇
  1972年   9篇
  1971年   7篇
排序方式: 共有1100条查询结果,搜索用时 0 毫秒
61.
Encapsulation efficiencies of vesicles formed by the nonionic surfactant 1,2-dioctadecyl-rac-glycerol-3-omega-methoxydodecylethylene glycol (abbreviated as 2C18E12) and its phospholipid counterpart, distearoylphosphatidylcholine (DSPC) at 298 K, were determined by the entrapment of the water-soluble dye, carboxyfluorescein (CF) to be 0.045+/-0.001 and 0.03+/-0.04 L mol(-1) for 2C18E12 vesicles prepared using low osmolarity (270 m Osm) Krebs-Henseleit (K-H) buffer and a modified 'high salt' (1600 m Osm) variant of K-H buffer, respectively, and 0.64+/-0.01 and 0.31+/-0.04 Lmol(-1) for DSPC vesicles prepared under the same conditions and in the same buffers. Freeze fracture electron microscopy studies confirmed the presence of vesicles when 2C18E12 and DSPC were dispersed in water and both buffer solutions. Small angle neutron scattering (SANS) studies, using D2O in place of H2O, showed that when 2C18E12 vesicles were prepared in the 'high salt' variant of K-H buffer as opposed to K-H buffer or water, a higher proportion of multilamellar vesicles (MLV) were formed. Furthermore when prepared in the 'high salt' variant of K-H buffer, the 2C18E12 bilayers were thinner, and when present in the form of MLV exhibited a smaller layer of water separating the bilayers. However, even in the absence of electrolyte, 2C18E12 formed surprisingly thin bilayers due to the penetration of the polyoxyethylene chains into the hydrophobic chain region of the bilayer. Due to the dehydrating effect of the high concentration of electrolyte present in the 'high salt' variant of K-H, the polyoxyethylene head groups penetrated further into the hydrophobic region of the bilayer making the bilayer even thinner. In the case of the DSPC vesicles, although the SANS study showed an increase in the relative proportion of multilamellar to unilamellar vesicles when samples were prepared in the 'high salt' variant of K-H buffer, no differences were observed in the thickness and the d-spacing of the vesicle bilayers. Variable temperature turbidity measurements of 2C18E12, and DSPC vesicles prepared in water indicated phase changes at 320+/-0.5 and 327+/-0.5 K, respectively, and were unchanged when the 'high salt' variant of K-H buffer was used as hydrating medium. Taken together, these results suggest that a low phase transition temperature was not the reason for the poor entrapment efficiency of 2C18E12 vesicles but rather the very 'thin' hydrophobic barrier formed by the penetration of the polyoxyethylene chains into the hydrophobic region of the bilayer.  相似文献   
62.
Polycyclic aromatic hydrocarbons (PAHs) are major environmental carcinogens produced in the combustion of fossil fuels, tobacco, and other organic matter. Current evidence indicates that PAHs are transformed enzymatically to active metabolites that react with DNA to form adducts that result in mutations. Three activation pathways have been proposed: the diol epoxide path, the radical-cation path, and the quinone path. The latter involves aldo-keto reductase mediated oxidation of PAH dihydrodiol metabolites to catechols that enter into redox cycles with quinones. This results in generation of reactive oxygen species (ROS) that attack DNA, and the PAH quinones also react with DNA to form adducts. Several strategies for synthesis of the stable adducts formed by the o-quinone metabolites of carcinogenic PAHs with 2'-deoxyribonucleosides were investigated and compared. The PAH quinones studied were benz[a]anthracene-3,4-dione and its 7-methyl- and 7,12-dimethyl- derivatives. The parent PAHs represent a range of carcinogenicity from inactive to highly potent. Two synthetic methods were devised that differ in the catalyst employed, Pd(OAc)(2) or CuI. The Pd-mediated method involved coupling a protected amino-catechol PAH derivative with a halo-2'-deoxyribonucleoside. The copper-mediated method entailed reaction of a halo-PAH catechol derivative with a 2'-deoxyribonucleoside. Adducts of benz[a]anthracene-3,4-dione (and its 7-methyl- and 7,12-dimethyl- derivatives) with 2'-deoxyadenosine and 2'-deoxyguanosine were prepared by these methods. Availability of adducts of these types through synthesis makes possible for the first time biological studies to determine the role of these adducts in tumorigenesis. The copper-mediated method offers advantages of economy, adaptability to large-scale preparation, utility for synthesis of (13)C- or (15)N-labeled analogues, and nonformation of bis-adducts as secondary products.  相似文献   
63.
The structure of the novel cadmium phenanthroline thio­sulfate poly­[[(1,10‐phenanthroline‐κ2N,N′)­cadmium(II)]‐μ3‐thio­sulfato‐κ3S:S:O], [Cd(S2O3)(C12H8N2)]n, with a pentacoordinated Cd centre, is reported. It forms linear chains built up around a 21 axis and is isostructural with the known bi­pyridine homologue. The structure is also compared with a previously reported closely related mono­aqua monohydrated phase, where the Cd2+ cation is hexacoordinated. The incidence of weak C—H⋯O interactions in the determination of its general packing properties is discussed.  相似文献   
64.
Two dendrimers consisting of a cofacial free‐base bisporphyrin held by a biphenylene spacer and functionalized with 4‐benzeneoxomethane (5‐(4‐benzene)tri‐10,15,20‐(4‐n‐octylbenzene)zinc(II)porphyrin) using either five or six of the six available meso‐positions, have been synthesized and characterized as models for the antenna effect in Photosystems I and II. The presence of the short linkers, ‐CH2O‐, and long C8H17 soluble side chains substantially reduces the number of conformers (foldamers) compared with classic dendrimers built with longer flexible chains. This simplification assists in their spectroscopic and photophysical analysis, notably with respect to fluorescence resonance energy transfer (FRET). Both steady‐state and time‐resolved spectroscopic measurements indicate that the cofacial free bases and the flanking zinc(II)–porphyrin antennas act as energy acceptor and donor, respectively, following excitation in either the Q or Soret bands of the dendrimers. The rate constants for singlet electronic energy transfer (kEET) extracted from the S1 and S2 fluorescence lifetimes of the donor in the presence and absence of the acceptor are ≤ (0.1–0.3)×109 and ~2×109 s?1 for S1→S1 (range from a bi‐exponential decay model) and about 1.5×1012 s?1 for S2→Sn (n>1). Comparisons of these experimental data with those calculated from Förster theory using orientation factors and donor–acceptor distances extracted from computer modeling suggest that a highly restricted number of the many foldamers facilitate energy transfer. These foldamers have the lowest energy by molecular modeling and consist of one or at most two of the flanking zinc porphyrin antennas folded so they lie near the central artificial special pair core with the remaining antennas located almost parallel to and far from it.  相似文献   
65.
The stoichiometric and catalytic activations of alkyl halides and acid chlorides by the unsatured Pd(3)(dppm)(3)(CO)(2+) cluster (Pd(3)(2+)) are investigated in detail. A series of alkyl halides (R-X; R = t-Bu, Et, Pr, Bu, allyl; X = Cl, Br, I) react slowly with Pd(3)(2+) to form the corresponding Pd(3)(X)(+) adduct and "R(+)". This activation can proceed much faster if it is electrochemically induced via the formation of the paramagnetic species Pd(3)(+). The latter is the first confidently identified paramagnetic Pd cluster. The kinetic constants extracted from the evolution of the UV-vis spectra for the thermal activation, as well as the amount of electricity to bring the activation to completion for the electrochemically induced reactions, correlate the relative C-X bond strength and the steric factors. The highly reactive "R(+)" species has been trapped using phenol to afford the corresponding ether. On the other hand, the acid chlorides react rapidly with Pd(3)(2+) where no induction is necessary. The analysis of the cyclic voltammograms (CV) establishes that a dissociative mechanism operates (RCOCl --> RCO(+) + Cl(-); R = t-Bu, Ph) prior to Cl(-) scavenging by the Pd(3)(2+) species. For the other acid chlorides (R = n-C(6)H(13), Me(2)CH, Et, Me, Pr), a second associative process (Pd(3)(2+) + RCOCl --> Pd(3)(2+.....)Cl(CO)(R)) is seen. Addition of Cu(NCMe)(4)(+) or Ag(+) leads to the abstraction of Cl(-) from Pd(3)(Cl)(+) to form Pd(3)(2+) and the insoluble MCl materials (M = Cu, Ag) allowing to regenerate the starting unsaturated cluster, where the precipitation of MX drives the reaction. By using a copper anode, the quasi-quantitative catalytic generation of the acylium ion ("RCO(+)") operates cleanly and rapidly. The trapping of "RCO(+)" with PF(6)(-) or BF(4)(-) leads to the corresponding acid fluorides and, with an alcohol (R'OH), to the corresponding ester catalytically, under mild conditions. Attempts were made to trap the key intermediates "Pd(3)(Cl)(+)...M(+)" (M(+) = Cu(+), Ag(+)), which was successfully performed for Pd(3)(ClAg)(2+), as characterized by (31)P NMR, IR, and FAB mass spectrometry. During the course of this investigation, the rare case of PF(6)(-) hydrolysis has been observed, where the product PF(2)O(2)(-) anion is observed in the complex Pd(3)(PF(2)O(2))(+), where the substrate is well-located inside the cavity formed by the dppm-Ph groups above the unsatured face of the Pd(3)(2+) center. This work shows that Pd(3)(2+) is a stronger Lewis acid in CH(2)Cl(2) and THF than AlCl(3), Ag(+), Cu(+), and Tl(+).  相似文献   
66.
The configuration of asphaltenes on the water-oil interface was evaluated from a combination of molar mass, interfacial tension, drop size distribution, and gravimetric measurements of model emulsions consisting of asphaltenes, toluene, heptane, and water. Molar mass measurements were required because asphaltenes self-associate and the level of self-association varies with asphaltene concentration, the resin content, solvent type, and temperature. Plots of interfacial tension versus the log of asphaltene molar concentration were employed to determine the average interfacial area of asphaltene molecules on the interface. The moles of asphaltenes per area of emulsion interface were determined from the molar mass data as well as drop size distributions and gravimetric measurements of the model emulsions. The results indicate that asphaltenes form monolayers on the interface even at concentrations as high as 40 kg/m(3). As well, large aggregates with molar masses exceeding approximately 10,000 g/mol did not appear to adsorb at the interface. The area occupied by the asphaltenes on the interface was constant indicating that self-associated asphaltenes simply extend further into the continuous phase than nonassociated asphaltenes. The thickness of the monolayer ranged from 2 to 9 nm.  相似文献   
67.
The structures of two new sulfate complexes are reported, namely di‐μ‐sulfato‐κ3O,O′:O′′‐bis{aqua­[2,4,6‐tris(2‐pyridyl)‐1,3,5‐triazine‐κ3N1,N2,N6]­cadmium(II)} tetra­hydrate, [Cd2(SO4)2(C16H12N6)2(H2O)2]·4H2O, and di‐μ‐sulfato‐κ2O:O′‐bis­[(2,2′:6′,2′′‐ter­pyridine‐κ3N1,N1′,N1′′)­zinc(II)] dihydrate, [Cd2(SO4)2(C15H11N3)2]·2H2O, the former being the first report of a Cd(tpt) complex [tpt is 2,4,6‐tris(2‐pyridyl)‐1,3,5‐triazine]. Both compounds crystallize in the space group P and form centrosymmetric dimeric structures. In the cadmium complex, the metal center is heptacoordinated in the form of a pentagonal bipyramid, while in the zinc complex, the metal ion is in a fivefold environment, the coordination geometry being intermediate between square pyramidal and trigonal bipyramidal. Packing of the dimers leads to the formation of planar structures strongly linked by hydrogen bonding.  相似文献   
68.
Density functional theory calculations are reported concerning the dissociative mechanism for alkene metathesis by ruthenium dichloride catalysts, including both bisphosphine and diaminocarbene/phosphine complexes. The calculations use a hierarchy of models, ranging from [(L)(PH(3))Ru(Cl)(2)(CH(2))](L=PH(3) or diaminocarbene) through the larger [(L)(PMe(3))Ru(Cl)(2)(CHPh)] to the "real"[(L)(PCy(3))Ru(Cl)(2)(CHPh)]. Calculations show that the rate-limiting step for metathesis is either ring closing from an alkene complex to form a ruthena-cyclobutane, or ring-opening of the latter intermediate to form an isomeric alkene complex. The higher efficiency of the diaminocarbene based catalysts is due to the stabilization of the formal +iv oxidation state of the ruthenium centre in the metallacycle. This effect is partly masked in the smaller model systems due to a previously unnoticed stereoelectronic effect. The calculations do not reproduce the experimental observation whereby the initiation step, phosphine dissociation, is more energetically demanding and hence slower for the diaminocarbene-containing catalyst system than for the bisphosphine. Further calculations on the corresponding bond energies using a variety of DFT and hybrid DFT/molecular mechanics methods all find instead a larger phosphine dissociation energy for the bisphosphine catalyst. This reversed order of binding energies would in fact be the one expected based on the stronger trans influence of the diaminocarbene ligand. The discrepancy with experiment is small and could have a number of causes which are discussed here.  相似文献   
69.
The normally remarkably inert SF6 has been found to be quite reactive toward low valent organometallic compounds, under conditions in which usually powerful fluorinating agents may be less reactive. Reaction of SF6 with Ti[1,3-C5H3(t-Bu)2](6,6-dmch)(PMe3), for example, leads to {Ti[1,3-C5H3(t-Bu)2]F2}4 (dmch = dimethylcyclohexadienyl), whose structure is based on a cube of fluoride ions with the ligated titanium centers situated above four coplanar face centers.  相似文献   
70.
Changing the orientational order in liquid-crystal elastomers leads to internal stresses and changes of the sample shape. When this effect is induced by light, due to photoisomerization of constituent molecular moieties, the photomechanical actuation results. We investigate quantitatively how the intensity and the polarization of light affect photoactuation. By studying dissolved, as well as covalently bonded azo-dyes, we determine the changes in absorption and the response kinetics. For the first time we compare the response of aligned monodomain, and randomly disordered polydomain nematic elastomers, and demonstrate that both have a comparable photoresponse, strongly dependent on the polarization of light. Polarization-dependent photoactuation in polydomain elastomers gives an unambiguous proof of its mechanism since it is the only experiment that distinguishes from the associated thermal effects.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号