首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   154篇
  免费   13篇
化学   144篇
数学   1篇
物理学   22篇
  2023年   2篇
  2022年   1篇
  2021年   5篇
  2020年   14篇
  2019年   3篇
  2018年   10篇
  2017年   3篇
  2016年   7篇
  2015年   10篇
  2014年   10篇
  2013年   7篇
  2012年   21篇
  2011年   12篇
  2010年   7篇
  2009年   2篇
  2008年   7篇
  2007年   6篇
  2006年   8篇
  2005年   9篇
  2004年   3篇
  2003年   4篇
  2002年   2篇
  2000年   1篇
  1993年   2篇
  1992年   2篇
  1989年   2篇
  1988年   2篇
  1984年   1篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
排序方式: 共有167条查询结果,搜索用时 912 毫秒
81.
Poly(carbonate‐urethane) consisting of alternating carbonate and urethane moieties (poly(HC‐MDI)) was prepared by polyaddition of 4,4′‐diphenylmethane diisocyanate (MDI) and a monocarbonate diol bis(3‐hydroxypropyl)carbonate (HC), prepared by hydrolysis of a six‐membered spiroorthocarbonate 1,5,7,11‐tetraoxa‐spiro[5.5]undecane. The polyaddition proceeds without concomitant side reactions including carbonate exchange reaction and affords the desired poly(carbonate‐urethane). The hydrolysis and thermal behaviors of poly(HC‐MDI) were compared with those of the analogous polyurethane carrying no carbonate structure (poly(ND‐MDI)) prepared from MDI and 1,9‐nonanediol (ND). Although the glass transition behaviors are almost identical, poly(HC‐MDI) is less crystalline than poly(ND‐MDI). Poly(HC‐MDI) is more susceptible to hydrolysis than poly(ND‐MDI) probably due to the higher polarity and the lower crystallinity. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2802–2808, 2006  相似文献   
82.
83.
The first electrochemical dehydrogenative C?S bond formation leading to thienoacene derivatives is described. Several thienoacene derivatives were synthesized by dehydrogenative C?H/S?H coupling. The addition of nBu4NBr, which catalytically promoted the reaction as a halogen mediator, was essential.  相似文献   
84.
The formation of a N?N bond is a unique biochemical transformation, and nature employs diverse biosynthetic strategies to activate nitrogen for bond formation. Among molecules that contain a N?N bond, biosynthetic routes to diazeniumdiolates remain enigmatic. We here report the biosynthetic pathway for the diazeniumdiolate‐containing amino acid l ‐alanosine. Our work reveals that the two nitrogen atoms in the diazeniumdiolate of l ‐alanosine arise from glutamic acid and aspartic acid, and we clarify the early steps of the biosynthetic pathway by using both in vitro and in vivo approaches. Our work demonstrates a peptidyl‐carrier‐protein‐based mechanism for activation of the precursor l ‐diaminopropionate, and we also show that nitric oxide can participate in non‐enzymatic diazeniumdiolate formation. Furthermore, we demonstrate that the gene alnA, which encodes a fusion protein with an N‐terminal cupin domain and a C‐terminal AraC‐like DNA‐binding domain, is required for alanosine biosynthesis.  相似文献   
85.
Research on Chemical Intermediates - This work spotlights the facile method to deposit cobalt oxide (CoOx) nanoparticles as a cocatalyst on Fe-MOF-bpdc to enhance its photocatalytic activity for...  相似文献   
86.
We describe the regioselective cycloaddition of La(2)@I(h)-C(80) with tetracyanoethylene oxide (TCNEO), which enabled the formation of the corresponding adduct having a tetracyanotetrahydrofuran moiety. X-ray crystallographic analysis revealed that the cycloaddition took place as a [5,6] addition. Along with dynamic swing motion of the metal atoms, the results of this electrochemical study demonstrate that TCNEO addition enhanced the electron-accepting character of La(2)@I(h)-C(80) and that the first reduction potential of the adduct reached -0.21 V versus the ferrocene/ferrocenium couple, which is the lowest value reported for endohedral metallofullerenes and their derivatives to date.  相似文献   
87.
Studies on confined water are important not only from the viewpoint of scientific interest but also for the development of new nanoscale devices. In this work, we aimed to clarify the properties of confined water in the cylindrical pores of single-walled carbon nanotubes (SWCNTs) that had diameters in the range of 1.46 to 2.40 nm. A combination of x-ray diffraction (XRD), nuclear magnetic resonance, and electrical resistance measurements revealed that water inside SWCNTs with diameters between 1.68 and 2.40 nm undergoes a wet-dry type transition with the lowering of temperature; below the transition temperature T(wd), water was ejected from the SWCNTs. T(wd) increased with increasing SWCNT diameter D. For the SWCNTs with D = 1.68, 2.00, 2.18, and 2.40 nm, T(wd) obtained by the XRD measurements were 218, 225, 236, and 237 K, respectively. We performed a systematic study on finite length SWCNT systems using classical molecular dynamics calculations to clarify the effect of open ends of the SWCNTs and water content on the water structure. It was found that ice structures that were formed at low temperatures were strongly affected by the bore diameter, a = D - σ(OC), where σ(OC) is gap distance between the SWCNT and oxygen atom in water, and the number of water molecules in the system. In small pores (a < 1.02 nm), tubule ices or the so-called ice nanotubes (ice NTs) were formed irrespective of the water content. On the other hand, in larger pores (a > 1.10 nm) with small water content, filled water clusters were formed leaving some empty space in the SWCNT pore, which grew to fill the pore with increasing water content. For pores with sizes in between these two regimes (1.02 < a < 1.10 nm), tubule ice also appeared with small water content and grew with increasing water content. However, once the tubule ice filled the entire SWCNT pore, further increase in the water content resulted in encapsulation of the additional water molecules inside the tubule ice. Corresponding XRD measurements on SWCNTs with a mean diameter of 1.46 nm strongly suggested the presence of such a filled structure.  相似文献   
88.
Arginine-rich, cell-penetrating peptides (e.g., Tat-peptide, penetratin, and polyarginine) are used to carry therapeutic molecules such as oligonucleotides, DNA, peptides, and proteins across cell membranes. Two types of processes are being considered to cross the cell membranes: one is an endocytic pathway, and another is an energy-independent, nonendocytic pathway. However, the latter is still not known in detail. Here, we studied the effects of the chain length of polyarginine on its interaction with an anionic phospholipid large unilamellar vesicle (LUV) or a giant vesicle using poly-l-arginine composed of 69 (PLA69), 293 (PLA293), or 554 (PLA554) arginine residues, together with octaarginine (R8). ζ-potential measurements confirmed that polyarginine binds to LUV via electrostatic interactions. Circular dichroism analysis demonstrated that the transition from the random coil to the α-helix structure upon binding to LUV occurred for PLA293 and PLA554, whereas no structural change was observed for PLA69 and R8. Fluorescence studies using membrane probes revealed that the binding of polyarginine to LUV affects the hydration and packing of the membrane interface region, in which the degree of membrane insertion is greater for the longer polyarginine. Isothermal titration calorimetry measurements demonstrated that although the binding affinity (i.e., the Gibbs free energy of binding) per arginine residue is similar among all polyarginines the contribution of enthalpy to the energetics of binding of polyarginine increases with increasing polymer chain length. In addition, confocal laser scanning microscopy showed that all polyarginines penetrate across giant vesicle membranes, and the order of the amount of membrane penetration is R8 ≈ PLA69 < PLA293 ≈ PLA554. These results suggest that the formation of α-helical structure upon lipid binding drives the insertion of polyarginine into the membrane interior, which appears to enhance the membrane penetration of polyarginine.  相似文献   
89.
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号