首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   283篇
  免费   4篇
化学   177篇
晶体学   5篇
力学   7篇
数学   32篇
物理学   66篇
  2022年   11篇
  2021年   9篇
  2020年   6篇
  2019年   5篇
  2018年   4篇
  2016年   4篇
  2015年   3篇
  2014年   9篇
  2013年   16篇
  2012年   25篇
  2011年   15篇
  2010年   11篇
  2009年   5篇
  2008年   10篇
  2007年   9篇
  2006年   14篇
  2005年   10篇
  2004年   8篇
  2003年   7篇
  2002年   2篇
  1999年   3篇
  1998年   3篇
  1997年   3篇
  1996年   2篇
  1995年   2篇
  1992年   2篇
  1991年   3篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
  1986年   2篇
  1985年   2篇
  1984年   6篇
  1983年   5篇
  1982年   1篇
  1981年   8篇
  1980年   4篇
  1979年   8篇
  1978年   6篇
  1977年   7篇
  1976年   4篇
  1975年   6篇
  1974年   3篇
  1973年   5篇
  1972年   1篇
  1968年   2篇
  1963年   1篇
  1958年   3篇
  1955年   1篇
  1954年   1篇
排序方式: 共有287条查询结果,搜索用时 15 毫秒
251.
In this work, the performance of integrated photocatalytic and biological treatment was studied for the degradation of 4-chlorophenol (MCP) present in wastewaters. Photocatalysis was used as a pre-treatment to biological degradation. Pollutant removal efficiency was quantified using MCP removal and total organic carbon (TOC) removal. Both photocatalytic as well as biological treatments were carried out in batch reactors, using TiO2 as the photocatalyst. The inoculum for biological experiments was obtained from paper mill effluent treatment plant and was developed through a process of selection and acclimatization. Effect of TiO2 concentration on the photocatalytic degradation of MCP was studied along with the effect of the duration of photochemical oxidation and glucose concentrations (0 g/L, 1 g/L and 2 g/L) on the biodegradation of MCP. Integrated biological and photochemical degradation was found to be more effective in treating MCP, especially at higher concentrations (400 mg/L). An initial MCP concentration of 400 mg/L required 96 h for complete mineralization when treated with the process combination, whereas the treatment went on up to 264 h when biodegradation alone was employed.  相似文献   
252.
Small-angle neutron scattering (SANS) studies were used to probe the stability and geometry of copper-seamed C-alkylpyrogallol[4]arene (PgC(n)Cu; n = 11, 13, 17) hexamers in solution. Novel structural features are observed at chain lengths greater than 10 in both solid and solution phase. Scattering data for the PgC(11)Cu and PgC(13)Cu in chloroform fitted as core-shell spheres with a total spherical radius of about 22.7 and 22.9 ? respectively. On the other hand, the scattering curve for the PgC(17)Cu hexamer at both 1% and 5% mass fractions in o-xylene did not fit as a discrete sphere but rather as a uniform ellipsoid. The geometric dimensions of the ellipsoid radii are 24 ? along the minor axis and 115 ? along the major axis. It is expected that an individual hexamer with heptadecyl chains would exhibit a uniform radius of ca. 24 ?. However, an approximate ratio of 1:5 between radii lengths for the minor axis and major axis is consistent with interpenetration of the heptadceyl chains of adjacent hexamers to form a single ellipsoidal assembly.  相似文献   
253.
The synthesis of a diaryl diselenide that contains 2,6‐dicarboxylic acid groups, 2,2′‐diselanediylbis(5‐tert‐butylisophthalic acid) ( 10 ), is described. Diselenide 10 undergoes intramolecular cyclization in methanol to form a cyclic selenenate ester, 5‐tert‐butyl‐3‐oxo‐3H‐benzo[c][1,2]oxaselenole‐7‐carboxylic acid ( 11 ). The cyclization reaction proceeds more rapidly in the presence of organic bases, such as pyridine, adenine, and 4,4′‐bipyridine, to form pyridinium 5‐tert‐butyl‐3‐oxo‐3H‐benzo[c][1,2]oxaselenole‐7‐carboxylate ( 14 ), adeninium 5‐tert‐butyl‐3‐oxo‐3H‐benzo[c][1,2]oxaselenole‐7‐carboxylate ( 15 ), and 4,4′‐bipyridiniumbis(5‐tert‐butyl‐3‐oxo‐3H‐benzo[c][1,2]oxaselenole‐7‐carboxylate) ( 16 ), respectively. However, 2,2′‐diselanediyldibenzoic acid ( 22 ) does not undergo cyclization under similar conditions. Structural studies on cyclic selenenate esters 14 – 16 revealed that the Se???O (COO?) secondary distances (2.170, 2.075, and 2.176 Å) were significantly shorter than the corresponding Se???O distances (2.465, 2.472, and 2.435 Å) observed for the selenenate esters stabilized by the neutral donors (CHO, COOH, and COOEt). 1H, 13C, and 77Se NMR spectroscopy of compounds 11 and 14 – 16 reveal that the aryl protons of compound 11 and the organic cations of compounds 14 – 16 exchange between the two carboxylate groups via a hypercoordinate intermediate. The corresponding hypercoordinate intermediate ( 14 b , pyridinium selenuranide) for compound 14 was detected at low temperatures using 77Se NMR spectroscopy. The presumed hypercoordinate intermediates in the carboxylate‐exchange reactions at the selenium(II) center for a set of model reactions were optimized using DFT‐B3LYP/6–311+g(d) calculations and their structural features compared with the X‐ray structure of anionic selenenate esters 14 – 16 .  相似文献   
254.
Recent work has described the preparation and characterization of the two complexes [Fe2(C10H8N2)4O(OH2)2](NO3)4 and [Co(C10H8N2)3]2[Co(OH2)6]·7(OH2) (NO3)8 in which both the nitrogen atoms of 2,2′-bipyridine are directly bonded with the metals. Their structures were determined by single-crystal X-ray diffraction at 296 K. Thermolysis of these complexes has been detailed by the use of TG–DTA and ignition delay measurements. Kinetics of thermal decomposition has also been established. Model free isoconversional and model fitting kinetic approaches have been applied to isothermal TG data for the decomposition of these complexes.  相似文献   
255.
We report CH/π hydrogen-bond-driven self-assembly in π-conjugated skeletons based on oligophenylenevinylenes (OPVs) and trace the origin of interactions at the molecular level by using single-crystal structures. OPVs were designed with appropriate pendants in the aromatic core and varied by hydrocarbon or fluorocarbon tails along the molecular axis. The roles of aromatic π-stack, van der Waals forces, fluorophobic effect and CH/π interactions were investigated on the theromotropic liquid crystallinity of OPV molecules. Single-crystal structures of hydrocarbon OPVs provided direct evidence for the existence of CH/π interactions between the π-ring (H-bond acceptor) and alkyl C-H (H-bond donor). The four important crystallographic parameters, d(c-x)=3.79 ?, θ=21.49°, φ=150.25° and d(Hp-x)=0.73 ?, matched in accordance with typical CH/π interactions. The CH/π interactions facilitate the close-packing of mesogens in x-y planes, which were further protruded along the c axis producing a lamellar structure. In the absence of CH/π interactions, van der Waals interactions drove the assembly towards a Schlieren nematic texture. Fluorocarbon OPVs exhibited smectic liquid-crystalline textures that further underwent Smectic A (SmA) to Smectic C (SmC) phase transitions with shrinkage up to 11%. The orientation and translational ordering of mesogens in the liquid-crystalline (LC) phases induced H- and J-type molecular arrangements in fluorocarbon and hydrocarbon OPVs, respectively. Upon photoexcitation, the H- and J-type molecular arrangements were found to emit a blue or yellowish/green colour. Time-resolved fluorescence decay measurements confirmed longer lifetimes for H-type smectic OPVs relative to that of loosely packed one-dimensional nematic hydrocarbon-tailed OPVs.  相似文献   
256.
Sodium- and aluminum-rich high-level nuclear waste glasses are prone to nepheline (NaAlSiO4) crystallization. Since nepheline removes three moles of glass-forming oxides (Al2O3 and SiO2) per mole of Na2O, the formation of this phase can result in severe deterioration of the chemical durability in a given glass. The present study aims to investigate the relationships between the molecular-level structure and the crystallization behavior of sodium alumino-borosilicate-based simulated high-level nuclear waste glasses with infrared spectroscopy (FTIR) and X-ray diffraction, respectively. The molecular structure of most of the investigated glasses comprise a mixture of Q2 and Q3 (Si) units while aluminum and boron are predominantly present in tetrahedral and trigonal coordination, respectively. The increasing boron content has been shown to suppress the nepheline formation in the glasses. The structural influence of various glass components on nepheline crystallization is discussed.  相似文献   
257.
The force constants have been calculated for thiazylnalides CISN and BrSN employing general valence force field and Urey-Dradley force field. The computed results show some interesting features. The mean amplitudes of vibration have also been calculated at temperatures, O°K, 298.15°K and 500°K. These results will be helpful for the interpretation of the electron diffraction data whenever available.  相似文献   
258.
Dynamic Stokes' shift and fluorescence anisotropy measurements using coumarin-153 (C153) and coumarin-151 (C151) as the fluorescence probes have been carried out in aqueous poly(ethylene oxide)20-poly(propylene oxide)70-poly(ethylene oxide)20 (P123) and poly(ethylene oxide)100-poly(propylene oxide)70-poly(ethylene oxide)100 (F127) block copolymer micelles with an aim to understand the water structures and dynamics in the micellar corona region. It has been established that the probes reside in the micellar corona region. It is indicated that the corona regions of P123 and F127 micelles are relatively less hydrated than the Palisade layers of neutral micelles like Triton-X-100 and Brij-35. From the appraisal of total Stokes' shift values for the probes in the two block copolymer micelles, it is inferred that the F127 micelle is more hydrated than the P123 micelle. It is observed that the dynamic Stokes' shift values for both of the probes remain more or less similar at all the temperatures studied in the P123 micelle. For C153 in F127, however, the observed Stokes' shift is seen to decrease quite sharply with temperature, though it remains quite similar for C151. Moreover, the fraction of the unobserved initial dynamic Stokes' shift is appreciably higher for both the probes in the F127 micelle compared to that in P123. Over the studied temperature range of 293-313 K, the spectral shift correlation function is described adequately by a bi-exponential function. Rotational relaxation times for C153 in both the micelles show a kind of transition at around 303 K. These results have been rationalized assuming collapse of the poly(ethylene oxide) (PEO) blocks and formation of water clusters in the corona region due to dehydration of poly(ethylene oxide) blocks with an increase in temperature. A dissimilar probe location has been inferred for the differences in the results with C153 and C151 probes in F127. Comparison of the microviscosity and the hydration of the block copolymer micelles has also been made with those of the other commonly used neutral micelles, for a better understanding of the results in the block copolymer micelles.  相似文献   
259.
A series of N-ortho-ferrocenyl benzoyl amino acid ethyl esters 3-9 have been prepared by coupling ortho-ferrocenyl benzoic acid 2 to the amino acid ethyl esters of glycine, l-alanine, l-leucine, l-phenylalanine, β-alanine, 4-aminobutyric acid and (±)-2-aminobutyric acid using the conventional 1,3-dicyclohexylcarbodiimide, 1-hydroxybenzotriazole protocol. The compounds were fully characterized by a range of NMR spectroscopic techniques and by mass spectrometry (MALDI-MS, ESI-MS). The X-ray crystal structure of the l-phenylalanine derivative 6 has been determined.  相似文献   
260.
One-dimensional (1D) nanostructures of fused ring polymeric systems: polyindene (PIn) and polyindole (PInd) were fabricated onto glass substrates using a chemical vapor deposition (CVD) method. Morphology of fabricated PIn and PInd structures studied using Olympus microscope reveals formation of 1D straight tubular, smooth and fluorescent nanostructures. The results obtained were further correlated with scanning electron microscopic (SEM) studies of PIn and PInd nanostructures, indicating appearance of fine nanothread entangled network (having diameter ∼ 50 nm) for PIn, and well-defined, straight and aligned nanotubes (having diameter ∼ 60 nm) for PInd. A comparative study on the morphology/dimensions of fabricated PIn and PInd nanostructures with the nanosized PIn and PInd structures obtained by oxidative synthetic routes is also discussed. The structural composition of fabricated PIn and PInd nanostructures is confirmed by Fourier transform infrared (FTIR) spectroscopy, thereby indicating existence of all infrared markers corresponding to the characteristic bands present in PIn and PInd. The study suggests that the fabricated PIn and PInd nanodimensional structures may find potential applications in the field of nanotechnology.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号