首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2061篇
  免费   35篇
  国内免费   14篇
化学   1152篇
晶体学   8篇
力学   81篇
数学   211篇
物理学   658篇
  2022年   13篇
  2021年   15篇
  2020年   19篇
  2019年   23篇
  2018年   13篇
  2017年   15篇
  2016年   20篇
  2014年   25篇
  2013年   83篇
  2012年   70篇
  2011年   92篇
  2010年   47篇
  2009年   27篇
  2008年   71篇
  2007年   80篇
  2006年   94篇
  2005年   82篇
  2004年   73篇
  2003年   74篇
  2002年   58篇
  2001年   62篇
  2000年   60篇
  1999年   35篇
  1998年   33篇
  1997年   35篇
  1996年   38篇
  1995年   41篇
  1994年   46篇
  1993年   59篇
  1992年   36篇
  1991年   35篇
  1990年   37篇
  1989年   35篇
  1988年   24篇
  1987年   31篇
  1986年   19篇
  1985年   36篇
  1984年   23篇
  1983年   32篇
  1982年   24篇
  1981年   24篇
  1980年   27篇
  1979年   19篇
  1978年   24篇
  1977年   35篇
  1975年   30篇
  1974年   23篇
  1973年   18篇
  1972年   24篇
  1966年   12篇
排序方式: 共有2110条查询结果,搜索用时 15 毫秒
981.
Antimicrobial peptides and proteins represent an important class of plant defensive compounds against pathogens and provide a rich source of lead compounds in the field of drug discovery. We describe the effective preparation of the cysteine‐rich snakin‐1 and ‐2 antimicrobial peptides by using a combination of solid‐phase synthesis and native chemical ligation. A subsequent cysteine/cystine mediated oxidative folding to form the six internal disulfide bonds concurrently gave the folded proteins in 40–50 % yield. By comparative evaluation of mass spectrometry, HPLC, biological data and trypsin digest mapping of folded synthetic snakin‐2 compared to natural snakin‐2, we demonstrated that synthetic snakin‐2 possesses full antifungal activity and displayed similar chromatographic behaviour to natural snakin‐2. Trypsin digest analysis allowed tentative assignment of three of the purported six disulfide bonds.  相似文献   
982.
Photosynthetic organisms are adapted to light characteristics in their habitat in part via the spectral characteristics of the associated chlorophyll pigments, which differ in the position of a formyl group around the chlorin macrocycle (chlorophylls b, d, f) or no formyl group (chlorophyll a). To probe the origin of this spectral tuning, the photophysical and electronic structural properties of a new set of synthetic chlorins are reported. The zinc and free base chlorins have a formyl group at either the 2‐ or 3‐position. The four compounds have fluorescence yields in the range 0.19–0.28 and singlet excited‐state lifetimes of ca 4 ns for zinc chelates and ca 8 ns for the free base forms. The photophysical properties of the 2‐ and 3‐formyl zinc chlorins are similar to those observed previously for 13‐formyl or 3,13‐diformyl chlorins, but differ markedly from those for 7‐formyl analogs. Molecular‐orbital characteristics obtained from density functional theory (DFT) calculations were used as input to spectral simulations employing the four‐orbital model. The analysis has uncovered the key changes in electronic structure engendered by the presence/location of a formyl group at various macrocycle positions, which is relevant to understanding the distinct spectral properties of the natural chlorophylls a, b, d and f.  相似文献   
983.
The deposition of silica on the surface of tobacco mosaic virus (TMV) is achieved at a higher pH (>7) as a means to enhance its usefulness as a template for the synthesis of nanostructures. Electron energy loss spectroscopy definitively shows the presence of a silica shell on the surface of the TMV while small angle X-ray scattering differentiates successfully between silica-coated TMV and silica particles in the presence of uncoated TMV. Importantly, coating reactions done in a 50% w/v methanol/water solution produce smaller silica nanostructures during the condensation of the hydrolysis intermediates, possibly aiding in obtaining uniform coating. Furthermore, TMV-templated silica coatings are found to enhance the stability of the virus particle in methanol at conditions that would ordinarily disrupt the assembled particle. Combined these findings demonstrate that TMV can function as an efficient template for the controlled deposition of silica at neutral pH.  相似文献   
984.
The isotopic composition of nitrous oxide (N2O) provides useful information for evaluating N2O sources and budgets. Due to the co-occurrence of multiple N2O transformation pathways, it is, however, challenging to use isotopic information to quantify the contribution of distinct processes across variable spatiotemporal scales. Here, we present an overview of recent progress in N2O isotopic studies and provide suggestions for future research, mainly focusing on: analytical techniques; production and consumption processes; and interpretation and modelling approaches. Comparing isotope-ratio mass spectrometry (IRMS) with laser absorption spectroscopy (LAS), we conclude that IRMS is a precise technique for laboratory analysis of N2O isotopes, while LAS is more suitable for in situ/inline studies and offers advantages for site-specific analyses. When reviewing the link between the N2O isotopic composition and underlying mechanisms/processes, we find that, at the molecular scale, the specific enzymes and mechanisms involved determine isotopic fractionation effects. In contrast, at plot-to-global scales, mixing of N2O derived from different processes and their isotopic variability must be considered. We also find that dual isotope plots are effective for semi-quantitative attribution of co-occurring N2O production and reduction processes. More recently, process-based N2O isotopic models have been developed for natural abundance and 15N-tracing studies, and have been shown to be effective, particularly for data with adequate temporal resolution. Despite the significant progress made over the last decade, there is still great need and potential for future work, including development of analytical techniques, reference materials and inter-laboratory comparisons, further exploration of N2O formation and destruction mechanisms, more observations across scales, and design and validation of interpretation and modelling approaches. Synthesizing all these efforts, we are confident that the N2O isotope community will continue to advance our understanding of N2O transformation processes in all spheres of the Earth, and in turn to gain improved constraints on regional and global budgets.  相似文献   
985.
The biogenic synthesis of metal nanomaterials offers an environmentally benign alternative to the traditional chemical synthesis routes. Colloidal silver (Ag) nanoparticles were synthesized by reacting aqueous AgNO(3) with Medicago sativa seed exudates under non-photomediated conditions. Upon contact, rapid reduction of Ag(+) ions was observed in <1 min with Ag nanoparticle formation reaching 90% completion in <50 min. Effect of Ag concentration, quantity of exudate and pH on the particle size and shape were investigated. At [Ag(+)]=0.01 M and 30°C, largely spherical nanoparticles with diameters in the range of 5-51 nm were generated, while flower-like particle clusters (mean size=104 nm) were observed on treatment at higher Ag concentrations. Pre-dilution of the exudate induced the formation of single-crystalline Ag nanoplates, forming hexagonal particles and nanotriangles with edge lengths of 86-108 nm, while pH adjustment to 11 resulted in monodisperse Ag nanoparticles with an average size of 12 nm. Repeated centrifugation and redispersion enhanced the percentage of nanoplates from 10% to 75% in solution. The kinetics of nanoparticle formation were monitored using ultraviolet-visible spectroscopy and the Ag products were characterized using transmission electron microscopy, selected-area electron diffraction, scanning electron microscopy, X-ray powder diffraction, and atomic force microscopy. X-ray photoelectron spectroscopy was used to investigate the elements and chemical environment in the top layers of the as-synthesized Ag nanoparticles, while the metabolites in the exudate were analyzed using gas chromatography-mass spectroscopy. To our knowledge, this is the first account of M. sativa seed exudate assisted synthesis and stabilization of biogenic Ag nanoparticles; the nanoplates are notably smaller and better faceted compared with those synthesized by vascular plant extracts previously reported. Stabilized films of exudate synthesized Ag nanoparticles were effective anti-bacterial agents.  相似文献   
986.
Four techniques for analyzing single molecule tracking data--confinement level analysis, time series analysis and statistical analysis of lateral diffusion, multistate kinetics, and a newly developed method, radius of gyration evolution analysis--are compared using a set of sample fluorophore trajectories obtained from the lipophilic carbocyanine dye 1,1'-dioctadecyl-3,3,3'3'-tetramethylindocarbocyanine, DiIC(18), partitioned into surface tethered poly(n-isopropylacrylamide). The purpose here is two-fold: first to test that these techniques can be applied to single molecules trajectories, which typically contain a smaller total number of frames than those obtained from other particles, e.g. quantum dots or gold nanoparticles; and second to critically compare the information obtained from each method against the others. A set of five SMT trajectories, ranging in length from 41 to 273 steps with a 30 ms frame transfer exposure, were all successfully analyzed by all four techniques, provided two important criteria were met: enough steps to define the motion were acquired in the trajectory, generally on the order of 50 steps, and the fast and slow diffusion coefficients differ by at least a factor of 5. Beyond that the four trajectory analysis methods studied provide partially confirmatory and partially complementary information. SMT data resulting from more complex physical behavior may well benefit from using these techniques in succession to identify and sort populations.  相似文献   
987.
The four-coordinate iron(II) phosphoraniminato complex PhB(MesIm)(3)Fe-N═PPh(3) undergoes an S = 0 to S = 2 spin transition with T(C) = 81 K, as determined by variable-temperature magnetic measurements and Mo?ssbauer spectroscopy. Variable-temperature single-crystal X-ray diffraction revealed that the S = 0 to S = 2 transition is associated with an increase in the Fe-C and Fe-N bond distances and a decrease in the N-P bond distance. These structural changes have been interpreted in terms of electronic structure theory.  相似文献   
988.
989.
The Cooperation Centre for Scientific Research Relative to Tobacco (CORESTA; Paris, France) "Task Force Genetically Modified Tobacco-Detection Methods" investigated the performance of qualitative and quantitative methods based on the polymerase chain reaction (PCR) for the detection and quantitation of genetically modified (GM) tobacco. In the 4 successful rounds of proficiency testing, the cauliflower mosaic virus 35S RNA promoter (CaMV 35S) and the Agrobacterium tumefaciens nopaline synthase terminator (NOS) were selected as target sequences. Blind-coded reference materials containing from 0.1 to 5.0% and from 0.15 to 4% GM tobacco were used in 2 rounds of qualitative and quantitative PCR, respectively. Eighteen laboratories from 10 countries participated in this study. Considering all methods and 2 rounds, the different laboratories were able to detect GM tobacco at the 0.1% level in 46 out of 58 tests in qualitative assays. The results of the proficiency test indicate that both end point screening and real-time quantitative methods are suitable for the detection of genetically modified organisms in tobacco leaf samples having a GM content of 0.1% or higher. The CORESTA proficiency study represents a first step towards the interlaboratory evaluation of accuracy and precision of PCR-based GM tobacco detection, which may lead to the harmonization of analytical procedures and to the enhancement of comparability of testing results produced by different laboratories.  相似文献   
990.
A prerequisite for the development of structure-reactivity correlations for photoreactive crystalline materials is to have detailed knowledge of the structural properties of the reactant crystalline phase. In some cases, however, the materials of interest can be prepared only as microcrystalline powders and are not amenable to structural characterization by single-crystal X-ray diffraction. This paper demonstrates the utility of modern powder X-ray diffraction techniques for obtaining structural understanding in such cases, leading to the development of structure-reactivity correlations. In particular, a series of three photoreactive organic salts are considered, which undergo the same photochemical asymmetric reaction but with high enantiomeric excess in two cases and low enantiomeric excess in the other case. The structural properties of the three salts determined from powder X-ray diffraction data are shown to provide a direct rationalization of these observations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号