首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   422篇
  免费   6篇
  国内免费   2篇
化学   293篇
晶体学   1篇
力学   7篇
数学   56篇
物理学   73篇
  2020年   4篇
  2019年   4篇
  2017年   5篇
  2016年   5篇
  2015年   3篇
  2014年   5篇
  2013年   16篇
  2012年   27篇
  2011年   30篇
  2010年   12篇
  2009年   8篇
  2008年   37篇
  2007年   33篇
  2006年   24篇
  2005年   18篇
  2004年   16篇
  2003年   12篇
  2002年   12篇
  2001年   6篇
  2000年   6篇
  1999年   3篇
  1998年   4篇
  1994年   8篇
  1993年   9篇
  1992年   6篇
  1991年   5篇
  1990年   3篇
  1988年   4篇
  1987年   5篇
  1986年   5篇
  1985年   5篇
  1984年   6篇
  1983年   3篇
  1982年   6篇
  1981年   3篇
  1980年   3篇
  1978年   3篇
  1977年   5篇
  1975年   3篇
  1973年   7篇
  1972年   3篇
  1969年   2篇
  1968年   2篇
  1966年   2篇
  1935年   2篇
  1932年   2篇
  1930年   2篇
  1924年   2篇
  1923年   2篇
  1909年   4篇
排序方式: 共有430条查询结果,搜索用时 78 毫秒
181.
Two new bis-bidentate bridging ligands have been prepared, L (naph) and L (anth), which contain two chelating pyrazolyl-pyridine units connected to an aromatic spacer (naphthalene-1,5-diyl and anthracene-9,10-diyl respectively) via methylene connectors. Each of these reacts with transition metal dications having a preference for octahedral coordination geometry to afford {M 8L 12} (16+) cages (for L (anth), M = Cu, Zn; for L (naph), M = Co, Ni, Cd) which have an approximately cubic arrangement of metal ions with a bridging ligand spanning each of the twelve edges, and a large central cavity containing a mixture of anions and/or solvent molecules. The cages based on L (anth) have two cyclic helical {M 4L 4} faces, of opposite chirality, connected by four additional L (anth) ligands as "pillars"; all metal centers have a meridional tris-chelate configuration. In contrast the cages based on L (naph) have (noncrystallographic) S 6 symmetry, with a diagonally opposite pair of corners having a facial tris-chelate configuration with the other six being meridional. An additional significant difference between the two types of structure is that the cubes containing L (anth) do not show significant interligand aromatic stacking interactions. However, in the cages based on L (naph), there are six five-membered stacks of aromatic ligand fragments around the periphery, each based on an alternating array of electron-rich (naphthyl) and electron-deficient (pyrazolyl-pyridine, coordinated to M (2+)) aromatic units. A consequence of this is that the cages {M 8(L (naph)) 12} (16+) retain their structural integrity in polar solvents, in contrast to the cages {M 8(L (anth)) 12} (16+) which dissociate in polar solvents. Consequently, the cages {M 8(L (naph)) 12} (16+) give NMR spectra in agreement with the symmetry observed in the solid state, and their fluorescence spectra (for M = Cd) display (in addition to the normal naphthalene-based pi-pi* fluorescence) a lower-energy exciplex-like emission feature associated with a naphthyl --> pyrazolyl-pyridine charge-transfer excited state arising from the pi-stacking between ligands around the cage periphery.  相似文献   
182.
The encapsulation of the aquated forms of molybdocene dichloride and titanocene dichloride by cucurbit[n]uril (Q[n], where n = 7 and 8) at different pD values has been studied by (1)H NMR spectroscopy and molecular modelling. (1)H NMR titration experiments indicate that both metallocenes form 1 : 1 host-guest complexes with both Q[7] and Q[8]. In these complexes, both the cyclopentadienyl ligands and metal centre are positioned deep within the cucurbituril cavity. In vitro cell proliferation studies using the cancer cell lines MCF-7 and 2008 showed that the encapsulated molybdocene complex was more active than the corresponding free metallocene, with GI(50) values of 210 and 400 muM respectively. However, unexpectedly the encapsulation of Cp(2)MoCl(2(aq))at pD 7 catalysed significant degradation of the cucurbituril framework in the presence of oxygen. Encapsulation of Cp(2)TiCl(2(aq)) by Q[7] greatly slowed the protonolysis of the cyclopentadienyl ligands in aqueous phosphate buffer (pD 7), while encapsulation in Q[8] only slightly retarded the hydrolytic degradation of the metallocene.  相似文献   
183.
Reaction of a tris-bidentate ligand L(1) (which can cap one triangular face of a metal polyhedron), a bis-bidentate ligand L(2) (which can span one edge of a metal polyhedron), and a range of M(2+) ions (M = Co, Cu, Cd), which all have a preference for six coordination geometry, results in assembly of the mixed-ligand polyhedral cages [M12(mu(3)-L(1))4(mu-L(2))12](24+). When the components are combined in the correct proportions [M(2+):L(1):L(2) = 3:1:3] in MeNO2, this is the sole product. The array of 12 M(2+) cations has a cuboctahedral geometry, containing six square and eight triangular faces around a substantial central cavity; four of the eight M3 triangular faces (every alternate one) are capped by a ligand L(1), with the remaining four M3 faces having a bridging ligand L(2) along each edge in a cyclic helical array. Thus, four homochiral triangular {M3(L(2))3}(6+) helical units are connected by four additional L(1) ligands to give the mixed-ligand cuboctahedral array, a topology which could not be formed in any homoleptic complex of this type but requires the cooperation of two different types of ligand. The complex [Cd3(L(2))3(ClO4)4(MeCN)2(H2O)2](ClO4)2, a trinuclear triple helicate in which two sites at each Cd(II) are occupied by monodentate ligands (solvent or counterions), was also characterized and constitutes an incomplete fragment of the dodecanuclear cage comprising one triangular {M3(L(2))3}(6+) face which has not yet reacted with the ligands L(1). (1)H NMR and electrospray mass spectrometric studies show that the dodecanuclear cages remain intact in solution; the NMR studies show that the Cd 12 cage has four-fold (D2) symmetry, such that there are three independent Cd(II) environments, as confirmed by a (113)Cd NMR spectrum. These mixed-ligand cuboctahedral complexes reveal the potential of using combinations of face-capping and edge-bridging ligands to extend the range of accessible topologies of polyhedral coordination cages.  相似文献   
184.
The reflected shock tube technique with multipass absorption spectrometric detection (at a total path length of approximately 1.75 m) of OH-radicals at 308 nm has been used to study the dissociation of CF3-radicals [CF3 + Kr --> CF2 + F + Kr (a)] between 1,803 and 2,204 K at three pressures between approximately 230 and 680 Torr. The OH-radical concentration buildup resulted from the fast reaction F + H2O --> OH + HF (b). Hence, OH is a marker for F-atoms. To extract rate constants for reaction (a), the [OH] profiles were modeled with a chemical mechanism. The initial rise in [OH] was mostly sensitive to reactions (a) and (b), but the long time values were additionally affected by CF2 + OH --> CF2O + H (c). Over the experimental temperature range, rate constants for (a) and (c) were determined from the mechanistic fits to be kCF3+Kr = 4.61 x 10-9 exp(-30,020 K/T) and kCF2+OH = (1.6 +/- 0.6) x 10-10, both in units of cm3 molecule-1 s-1. Reaction (a), its reverse recombination reaction reaction (-a), and reaction (c) are also studied theoretically. Reactions (c) and (-a) are studied with direct CASPT2 variable reaction coordinate transition state theory. A master equation analysis for reaction (a) incorporating the ab initio determined reactive flux for reaction (-a) suggests that this reaction is close to but not quite in the low-pressure limit for the pressures studied experimentally. In contrast, reaction (c) is predicted to be in the high-pressure limit due to the high exothermicity of the products. A comparison with past and present experimental results demonstrates good agreement between the theoretical predictions and the present data for both (a) and (c).  相似文献   
185.
The potential energy surface for the CH + N2 reaction was reexamined with multireference ab initio electronic structure methods employing basis sets up to aug-cc-pvqz. Comparisons with related CCSD(T) calculations were also made. The multireference ab initio calculations indicate significant shortcomings in single reference based methods for two key rate-limiting transition states. Transition state theory calculations incorporating the revised best estimates for the transition state properties provide order of magnitude changes in the predicted rate coefficient in the temperature range of importance to the mechanism for prompt NO formation. At higher temperatures, two distinct pathways make a significant contribution to the kinetics. A key part of the transition state analysis involves a variable reaction coordinate transition state theory treatment for the formation of H + NCN from HNCN. The present predictions for the rate coefficients resolve the discrepancy between prior theory and very recent experimental measurements.  相似文献   
186.
Measurements made with a dilute, non-oriented, gas-phase sample of a selected fenchone enantiomer using circularly polarized synchrotron radiation demonstrate huge chiral asymmetries, approaching 20%, in the angular distribution of photoelectrons ejected from carbonyl C 1s core orbitals. This asymmetry in the forward-backward scattering of electrons along the direction of the incident soft X-ray radiation reverses when either the enantiomer or the left-right handedness of the light polarization is exchanged. Calculations are provided that model and explain the resulting photoelectron circular dichroism with quantitative accuracy up to approximately 7 eV above threshold. A discrepancy at higher energies is discussed in the light of a comparison with the closely related terpene, camphor. The photoelectron dichroism spectrum can be used to identify the absolute chiral configuration, and it is more effective at distinguishing the similar camphor and fenchone molecules than the corresponding core photoelectron spectrum.  相似文献   
187.
The inner-shell C 1s photoionization of randomly oriented molecules of the chiral compound carvone has been investigated using circularly polarized synchrotron radiation up to 30 eV above threshold. Binding energies of the C=O and CH2= carbon 1s orbitals were determined to be 292.8+/-0.2 and 289.8+/-0.2 eV, respectively. The remaining C-H C 1s levels substantially overlap under an intense central peak centered at 290.5+/-0.2 eV. The angle-resolved photoemission from the carbonyl carbon C=O core orbital in pure carvone enantiomers shows a pronounced circular dichroism of approximately 6% at the magic angle of 54.7 degrees to the light beam propagation direction. This corresponds to an expected 0 degrees -180 degrees forward-backward electron emission asymmetry of approximately 10%. On changing between the R and S enantiomers of carvone the sense or sign of the asymmetry and associated dichroism effectively reverses. The observed circular dichroism, and its energy dependence, is well accounted for by calculations performed in the pure electric dipole approximation.  相似文献   
188.
189.
In 1996, Harding showed that the binarydecompositions of any algebraic, relational, ortopological structure X form an orthomodular poset FactX. Here, we begin an investigation of the structuralproperties of such orthomodular posets of decompositions.We show that a finite set S of binary decompositions inFact X is compatible if and only if all the binarydecompositions in S can be built from a common n-arydecomposition of X. This characterization ofcompatibility is used to show that for any algebraic,relational, or topological structure X, the orthomodularposet Fact X is regular. Special cases of this result include the known facts that theorthomodular posets of splitting subspaces of an innerproduct space are regular, and that the orthomodularposets constructed from the idempotents of a ring are regular. This result also establishes theregularity of the orthomodular posets that Mushtariconstructs from bounded modular lattices, theorthomodular posets one constructs from the subgroups ofa group, and the orthomodular posets oneconstructs from a normed group with operators. Moreover,all these orthomodular posets are regular for the samereason. The characterization of compatibility is also used to show that for any structure X, thefinite Boolean subalgebras of Fact X correspond tofinitary direct product decompositions of the structureX. For algebraic and relational structures X, this result is extended to show that the Booleansubalgebras of Fact X correspond to representations ofthe structure X as the global sections of a sheaf ofstructures over a Boolean space. The above results can be given a physical interpretation as well.Assume that the true or false questions of a quantum mechanical system correspond tobinary direct product decompositions of the state spaceof the system, as is the case with the usual von Neumanninterpretation of quantum mechanics. Suppose S is asubset of . Then a necessary andsufficient condition that all questions in S can beanswered simultaneously is that any two questions in S can be answeredsimultaneously. Thus, regularity in quantum mechanicsfollows from the assumption that questions correspond todecompositions.  相似文献   
190.
A kinetic mechanism for the chain decomposition of formaldehyde consistent with recent theoretical and experimental results is presented. This includes new calculations and measurements of the rate constant for the abstraction reaction The calculation uses a multi-reference configuration interaction wavefunction to construct the potential energy surface which is used in a tunneling-corrected TST calculation of the rate constant. The rate constant for the bond fission at high temperatures was determined by an RRKM extrapolation of direct low temperature measurements. This mechanism has been successfully tested against laser-schlieren measurements covering the temperature range 2200–3200 K. These measurements are insensitive to all but the above two reactions and they confirm the large, non-Arrhenius rate for the abstraction reaction derived here from theory. Modeling of previous experiments using IR emission, ARAS, and CO laser absorption with this mechanism is quite satisfactory. The branching ratio of the rate of the faster molecular dissociation (CH2O + (M) → CO + H2 + (M)), to that of the bond fission reaction, was estimated to be no more than 2 or 3 over 2000 to 3000 K. Such a ratio is consistent with one recent theoretical estimate and most of the experimental observations. © 1993 John Wiley & Sons, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号