首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17923篇
  免费   3141篇
  国内免费   2391篇
化学   12827篇
晶体学   203篇
力学   1281篇
综合类   159篇
数学   1824篇
物理学   7161篇
  2024年   62篇
  2023年   377篇
  2022年   637篇
  2021年   670篇
  2020年   748篇
  2019年   655篇
  2018年   585篇
  2017年   517篇
  2016年   821篇
  2015年   820篇
  2014年   1011篇
  2013年   1215篇
  2012年   1611篇
  2011年   1647篇
  2010年   1095篇
  2009年   1024篇
  2008年   1185篇
  2007年   1026篇
  2006年   1055篇
  2005年   870篇
  2004年   685篇
  2003年   571篇
  2002年   567篇
  2001年   470篇
  2000年   391篇
  1999年   451篇
  1998年   316篇
  1997年   295篇
  1996年   340篇
  1995年   286篇
  1994年   272篇
  1993年   204篇
  1992年   193篇
  1991年   155篇
  1990年   134篇
  1989年   113篇
  1988年   107篇
  1987年   66篇
  1986年   60篇
  1985年   43篇
  1984年   31篇
  1983年   26篇
  1982年   13篇
  1981年   18篇
  1980年   7篇
  1979年   2篇
  1966年   1篇
  1957年   5篇
  1936年   2篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
201.
202.
Metal–organic frameworks (MOFs) are a class of important porous materials with many current and potential applications. Their applications almost always involve the interaction between host framework and guest species. Therefore, understanding of host–guest interaction in MOF systems is fundamentally important. Solid-state NMR spectroscopy is an excellent technique for investigating host–guest interaction as it provides information complementary to that obtained from X-ray diffraction. In this work, using MOF α-Mg3(HCOO)6 as an example, we demonstrated that 13C chemical shift tensor of organic linker can be utilized to probe the host–guest interaction in MOFs. Obtaining 13C chemical shift tensor components (δ11, δ22, and δ33, where δ11δ22δ33) in this MOF is particularly challenging as there are six coordinatively equivalent but crystallographically non-equivalent carbons in the unit cell with very similar local coordination environment. Two-dimensional magic-angle-turning experiments were employed to measure the 13C chemical shift tensors of each individual crystallographically non-equivalent carbon in three microporous α-Mg3(HCOO)6 samples with different guest species. The results indicate that the δ22 component (with its direction approximately being co-planar with the formate anion and perpendicular to the C−H bond) is more sensitive to the adsorbate molecules inside the MOF channel due to the weak C−H···O hydrogen bonding or the ring current effect of benzene. The 13C isotropic chemical shift, on the other hand, seems much less sensitive to the subtle changes in the local environment around formate linker induced by adsorption. The approach described in this study may be used in future studies on host–guest interaction within MOFs.  相似文献   
203.
The Ni? Mo/Mg(OH)2 (NMM) hybrid as an efficient flame retardancy and smoke suppression composite for polypropylene (PP) was synthesized through Ni? Mo co‐precipitation on the surface of Mg(OH)2 (MH) hexagonal nanosheets. Compared to PP/MH, PP/NMM exhibited excellent smoke suppressing and flame retardancy on the heat release rate, total heat release, smoke production rate, total smoke production, CO production rate and total CO production with the same loading. The reduced hazard of PP/NMM was mainly attributed to the high physical barrier effect of compact char residues on heat, smoke and combustible gas. The mechanism study indicated that multiwalled carbon nanotubes (MWCNTs) generated from the catalytic carbonization of PP by the Ni? Mo compound could play the role of “rebar” to strengthen the char residues, avoid the generation of cracks and form highly compact char layer. Furthermore, MgO could facilitate the production of MWCNTs through changing the pyrolysis process of PP and increasing the reaction time between pyrolysis gas and Ni? Mo compound. Hence, the new Ni? Mo/MH catalyst hybrid may explore the potential for solving the tough problem of the flammability and heavy smoke of the polyolefins system.  相似文献   
204.
In this paper, the gas-sensing properties of copper oxide porous nanosheets in amorphous and highly crystalline states were comparatively investigated on the premise of almost the same specific surface area, morphology and size. Unexpectedly, the results show that amorphous copper oxide porous nanosheets have much better gas sensing properties than highly crystalline copper oxide to a serious of volatile organic compounds, and the lowest detection limit (LOD) of the amorphous copper oxide porous nanosheets to methanal is even up to 10 ppb. By contrast, the LOD of the highly crystalline copper oxide porous nanosheets to methanal is 95 ppb. Experiments prove that the oxygen vacancies contained in the amorphous copper oxide porous nanosheets play a key role in improving gas sensitivity, which greatly improve the chemical activity of the materials, especially for the adsorption of molecules containing oxygen-groups such as methanal and oxygen.  相似文献   
205.
206.
207.
Ytterbium, erbium, aluminum tri-doped zinc oxide crystal was synthesized, which can turn color from red to green up-conversion luminescence through adjusting aluminum content. When the aluminum concentration reached 4?mol%, the color of up-conversion emission first turn from red to green. Meanwhile, the ratio of red to green emission reduced from 25.32 to 0.26, and the coordinates of chromaticity coordinate calculation changes from (0.5749, 0.3378) to (0.2190, 0.7169) with aluminum concentration range from 0 to 4?mol%. The up-conversion emission peaks at 521, 542, and 660?nm of sample originate from the transitions of 2H11/24I15/2, 4S3/24I15/2, and 4F9/24I15/2 of erbium ions, respectively. X-ray diffraction patterns perform the better crystallization degree with increasing aluminum concentration. The scanning electron microscopy images show the porous and lamellar structures with different aluminum concentrations. A convenient but effective design to obtain ytterbium, erbium, aluminum tri-doped zinc oxide up-conversion luminescence is reported, which can turn color from red to green.  相似文献   
208.
张然  彭增辉  刘永刚  郑致刚  宣丽 《中国物理 B》2009,18(10):4380-4384
Fully atomistic molecular dynamics (MD) simulations at 293, 303 and 313~K have been performed for the four-component liquid crystal mixture, E7, using the software package Material Studio. Order parameters and orientational time correlation functions (TCFs) were calculated from MD trajectories. The rotational viscosity coefficients (RVCs) of the mixture were calculated using the Nemtsov--Zakharov and Fialkowski methods based on statistical-mechanical approaches. Temperature dependences of RVC and density were discussed in detail. Reasonable agreement between the simulated and experimental values was found.  相似文献   
209.
Three novel complexes [Nd(L)(NO3)(H2O)2]·NO3·2H2O (HL1 = N-pyrimidine norcantharidin acylamide acid, C12H13N3O4; HL2 = N-pyridine norcantharidin acylamide acid, C13H14N2O4; HL3 = N-phenyl norcantharidin acylamide acid, C14H15NO4) were synthesized. HL1, HL2 and HL3 are the ligand of complex(1), complex(2) and complex(3), respectively. Their structures were characterized by elemental analysis, conductivity measurement, infrared spectra and thermogravimetric analysis. The DNA-binding properties of the complexes have been investigated by fluorescence spectroscopy and viscosity measurements. The results suggest that the complexes can bind to DNA by partial intercalation. The liner Stern-Volmer quenching constant Ksq values are 3.3(±0.21)(1), 1.7(±0.19)(2) and 0.9(±0.04)(3), respectively. Complex (1) and (2) have been found to cleave pBR322 plasmid DNA at physiological pH and temperature. The test of antiproliferation activity indicates that complex(1) has strong antiproliferative ability against the SMMC7721 (IC50 = 131.7 ± 23.4 μmol·L−1) and A549 (IC50 = 128.4 ± 19.9 μmol·L−1) cell lines. The inhibition rates of complex(2) (IC50 = 86.3 ± 11.3 μmol·L−1) are much higher than that of NCTD (IC50 = 115.5 ± 9.5 μmol·L−1) and HL2 (111.0 ± 5.7 μmol·L−1) against SMMC7721 cell lines.  相似文献   
210.
Hyperbranched star polymer HBPS-(PPEGMA) x was synthesized by atom transfer radical polymerization (ATRP) using hyperbranched polystyrene (HBPS) as macroinitiator and poly(ethylene glycol) methyl ether methacrylate (PEGMA) as monomer. The structure of the prepared hyperbranched star polymer was characterized by 1H NMR, ATR-FTIR, and GPC. Polymer electrolytes based on HBPS-(PPEGMA) x , lithium salt, and/or nano-TiO2 were prepared. The influences of lithium salt concentration and type, nano-TiO2 content, and size on ionic conductivity of the obtained polymer electrolytes were investigated. The results showed that the low crystallinity of the prepared polymer electrolyte was caused by the interaction between lithium salt and polymer. The addition of TiO2 into HBPS-(PPEGMA) x /LiTFSI improved the ionic conductivity at low temperature. The prepared composite polymer electrolyte showed the highest ionic conductivity of 9?×?10?5 S cm?1 at 30 °C when the content of TiO2 was 15 wt% and the size of TiO2 was 20 nm.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号