首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   226097篇
  免费   40308篇
  国内免费   45869篇
化学   161792篇
晶体学   5034篇
力学   14797篇
综合类   4562篇
数学   33206篇
物理学   92883篇
  2024年   495篇
  2023年   3441篇
  2022年   6477篇
  2021年   7597篇
  2020年   8460篇
  2019年   8203篇
  2018年   7430篇
  2017年   8336篇
  2016年   9650篇
  2015年   10811篇
  2014年   13270篇
  2013年   17174篇
  2012年   19596篇
  2011年   20861篇
  2010年   16641篇
  2009年   16612篇
  2008年   18083篇
  2007年   16037篇
  2006年   15509篇
  2005年   12902篇
  2004年   10092篇
  2003年   7840篇
  2002年   7806篇
  2001年   7186篇
  2000年   6819篇
  1999年   5268篇
  1998年   3701篇
  1997年   3219篇
  1996年   3128篇
  1995年   2741篇
  1994年   2562篇
  1993年   2174篇
  1992年   1982篇
  1991年   1600篇
  1990年   1425篇
  1989年   1216篇
  1988年   1003篇
  1987年   885篇
  1986年   794篇
  1985年   631篇
  1984年   535篇
  1983年   429篇
  1982年   336篇
  1981年   255篇
  1980年   202篇
  1979年   181篇
  1978年   82篇
  1977年   61篇
  1976年   53篇
  1965年   54篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
171.
Fully utilizing solar energy for catalysis requires the integration of conversion mechanisms and therefore delicate design of catalyst structures and active species. Herein, a MOF crystal engineering method was developed to controllably synthesize a copper–ceria catalyst with well-dispersed photoactive Cu-[O]-Ce species. Using the preferential oxidation of CO as a model reaction, the catalyst showed remarkably efficient and stable photoactivated catalysis, which found practical application in feed gas treatment for fuel cell gas supply. The coexistence of photochemistry and thermochemistry effects contributes to the high efficiency. Our results demonstrate a catalyst design approach with atomic or molecular precision and a combinatorial photoactivation strategy for solar energy conversion.  相似文献   
172.
Although tremendous efforts have been devoted to understanding the origin of boosted charge storage on heteroatom-doped carbons, none of the present studies has shown a whole landscape. Herein, by both experimental evidence and theoretical simulation, it is demonstrated that heteroatom doping not only results in a broadened operating voltage, but also successfully promotes the specific capacitance in aqueous supercapacitors. In particular, the electrolyte cations adsorbed on heteroatom-doped carbon can effectively inhibit hydrogen evolution reaction, a key step of water decomposition during the charging process, which broadens the voltage window of aqueous electrolytes even beyond the thermodynamic limit of water (1.23 V). Furthermore, the reduced adsorption energy of heteroatom-doped carbon consequently leads to more stored cations on the heteroatom-doped carbon surface, thus yielding a boosted charge storage performance.  相似文献   
173.
Motor Imagery Electroencephalography (MI-EEG) has shown good prospects in neurorehabilitation, and the entropy-based nonlinear dynamic methods have been successfully applied to feature extraction of MI-EEG. Especially based on Multiscale Fuzzy Entropy (MFE), the fuzzy entropies of the τ coarse-grained sequences in τ scale are calculated and averaged to develop the Composite MFE (CMFE) with more feature information. However, the coarse-grained process fails to match the nonstationary characteristic of MI-EEG by a mean filtering algorithm. In this paper, CMFE is improved by assigning the different weight factors to the different sample points in the coarse-grained process, i.e., using the weighted mean filters instead of the original mean filters, which is conductive to signal filtering and feature extraction, and the resulting personalized Weighted CMFE (WCMFE) is more suitable to represent the nonstationary MI-EEG for different subjects. All the WCMFEs of multi-channel MI-EEG are fused in serial to construct the feature vector, which is evaluated by a back-propagation neural network. Based on a public dataset, extensive experiments are conducted, yielding a relatively higher classification accuracy by WCMFE, and the statistical significance is examined by two-sample t-test. The results suggest that WCMFE is superior to the other entropy-based and traditional feature extraction methods.  相似文献   
174.
Li  C.  Zhang  D.  Cheng  G.  Zhu  Y. 《Experimental Mechanics》2020,60(3):329-343
Experimental Mechanics - There have been relatively few studies on mechanical properties of nanomaterials under high strain rates, mainly due to the lack of capable nanomechanical testing devices....  相似文献   
175.
Shi  D.  Feng  J.  Wang  J.  Zhao  W.  Li  X. 《Kinetics and Catalysis》2020,61(5):750-757
Kinetics and Catalysis - A series of Cu-SSZ-13@CeO2 catalysts with surface modification with CeO2 was prepared by the modified self-resemble method based on the one-pot synthesized Cu-SSZ-13...  相似文献   
176.
Naphthalimide‐phthalimide derivatives (NDPDs) have been synthesized and combined with an iodonium salt, N‐vinylcarbazole, amine or 2,4,6‐tris(trichloromethyl)‐1,3,5‐triazine to produce reactive species (i.e., radicals and cations). These generated reactive species are capable of initiating the cationic polymerization of epoxides and/or the radical polymerization of acrylates upon exposure to very soft polychromatic visible lights or blue lights. Compared with the well‐known camphorquinone based systems used as references, the novel NDPD based combinations employed here demonstrate clearly higher efficiencies for the cationic polymerization of epoxides under air as well as the radical polymerization of acrylates. Remarkably, one of the NDPDs (i.e., NDPD2) based systems is characterized by an outstanding reactivity. The structure/reactivity/efficiency relationships of the investigated NDPDs were studied by fluorescence, cyclic voltammetry, laser flash photolysis, electron spin resonance spin trapping, and steady state photolysis techniques. The key parameters for their reactivity are provided. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 665–674  相似文献   
177.
Four kinds of red phosphorescent organic light-emitting devices were fabricated and compared to investigate the effect of interfacial layers for hole transport and electron injection. 1 nm-thick LiF in the device A and C and 1 nm-thick Cs2CO3 in the device B and D were deposited as an electron injection layer between the anode and the electron transport layer, and 5 nm-thick layer of dipyrazion[2,3-f:2′,2′-h]quinoxaline-2,3,6,7,10,11-hexacarbonitrile[HATCN] was inserted as a hole transport interfacial layer between the hole injection layer and the hole transport layer only in the device C and D. Under a luminance of 1000 cd/m2, the power efficiencies were 7.6 lm/W and 8.5 lm/W in the device A and B, and 8.6 lm/W and 13.4 lm/W in the device C and D. The quantum efficiency of the device D was 15.8% under 1000 cd/m2 which was somewhat lower than those of the device A and C, but a little higher than that of the device B. The luminance of the device D was much higher than those of the other devices at a given votage. The luminance of the device D at 7 V was 23,710 cd/m2, which was 13.0, 3.4, and 4.0 times higher than those of the device A, B, and C at the same voltage, respectively.  相似文献   
178.
A sensitive and reliable LC–MS/MS method was developed and validated for simultaneous quantification of the major components of Huangqi–Honghua extact in rat plasma, including hydroxysafflor yellow A (HSYA), astragaloside IV (ASIV), calycosin‐7‐O‐β‐d ‐glucoside (CAG), calycosin, calycosin‐3′‐O‐glucuronide (C‐3′‐G) and calycosin‐3′‐O‐sulfate (C‐3′‐S). After extraction by protein precipitation with acetonitrile and methanol from plasma, the analytes were separated on a Hypersil BDS C18 column by gradient elution with acetonitrile and 5 mM ammonium acetate. The detection was carried out on a triple quadrupole tandem mass spectrometer equipped with electrospray ionization source switched between negative and positive modes. HSYA was monitored in negative ionization mode from 0 to 4.9 min, and ASIV, CAG, calycosin, C‐3′‐G and C‐3′‐S were determined in positive ionization mode from 4.9 to 10 min. The lower limits of quantification of the analytes were 6.25 ng/mL for HSYA, 0.781 ng/mL for CAG and 1.56 ng/mL for ASIV and calycosin. The intra‐ and inter‐assay precision (RSD) values were within 13.43%, and accuracy (RE) ranged from ?8.75 to 9.92%. The validated method was then applied to the pharmacokinetic study of HSYA, ASIV, CAG, calycosin, C‐3′‐G and C‐3′‐S in rat after an oral administration of Huangqi–Honghua extract.  相似文献   
179.
Efficient water electrolysis catalyst is highly demanded for the production of hydrogen as a sustainable energy fuel. It is reported that cobalt derived nanoparticle (CoS2, CoP, CoS|P) decorated reduced graphene oxide (rGO) composite aerogel catalysts for highly active and reliable hydrogen evolution reaction electrocatalysts. 7 nm level cobalt derived nanoparticles are synthesized over graphene aerogel surfaces with excellent surface coverage and maximal expose of active sites. CoS|P/rGO hybrid aerogel composites show an excellent catalytic activity with overpotential of ≈169 mV at a current density of ≈10 mA cm?2. Accordingly, efficient charge transfer is attained with Tafel slope of ≈52 mV dec?1 and a charge transfer resistance (Rct) of ≈12 Ω. This work suggests a viable route toward ultrasmall, uniform nanoparticles decorated graphene surfaces with well‐controlled chemical compositions, which can be generally useful for various applications commonly requiring large exposure of active surface area as well as robust interparticle charger transfer.  相似文献   
180.
The modulation of electron density is an effective option for efficient alternative electrocatalysts. Here, p‐n junctions are constructed in 3D free‐standing FeNi‐LDH/CoP/carbon cloth (CC) electrode (LDH=layered double hydroxide). The positively charged FeNi‐LDH in the space‐charge region can significantly boost oxygen evolution reaction. Therefore, the j at 1.485 V (vs. RHE) of FeNi‐LDH/CoP/CC achieves ca. 10‐fold and ca. 100‐fold increases compared to those of FeNi‐LDH/CC and CoP/CC, respectively. Density functional theory calculation reveals OH? has a stronger trend to adsorb on the surface of FeNi‐LDH side in the p‐n junction compared to individual FeNi‐LDH further verifying the synergistic effect in the p‐n junction. Additionally, it represents excellent activity toward water splitting. The utilization of heterojunctions would open up an entirely new possibility to purposefully regulate the electronic structure of active sites and promote their catalytic activities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号