首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   201620篇
  免费   1665篇
  国内免费   835篇
化学   92107篇
晶体学   2803篇
力学   11577篇
综合类   5篇
数学   43581篇
物理学   54047篇
  2018年   10950篇
  2017年   10717篇
  2016年   7263篇
  2015年   1806篇
  2014年   1603篇
  2013年   5083篇
  2012年   7078篇
  2011年   14677篇
  2010年   8272篇
  2009年   8454篇
  2008年   10374篇
  2007年   12552篇
  2006年   4231篇
  2005年   5220篇
  2004年   4931篇
  2003年   5088篇
  2002年   4041篇
  2001年   3802篇
  2000年   2944篇
  1999年   2334篇
  1998年   2061篇
  1997年   2002篇
  1996年   1991篇
  1995年   1885篇
  1994年   1620篇
  1993年   1624篇
  1992年   1804篇
  1991年   1806篇
  1990年   1725篇
  1989年   1741篇
  1988年   1742篇
  1987年   1731篇
  1986年   1643篇
  1985年   2182篇
  1984年   2303篇
  1983年   1923篇
  1982年   2253篇
  1981年   2067篇
  1980年   2119篇
  1979年   2101篇
  1978年   2220篇
  1977年   2109篇
  1976年   2130篇
  1975年   2070篇
  1974年   1908篇
  1973年   2129篇
  1972年   1300篇
  1971年   985篇
  1968年   1061篇
  1967年   1112篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
91.
    
Ohne Zusammenfassung  相似文献   
92.
Saint-Venant’s Problem, Almansi–Michell Problems, Meshfree Methods, Piezoelectricity. We present a semi-analytical method for analyzing prismatic nonhomogeneous piezoelectric cylinders with arbitrary cross-sectional geometry. The prescribed loads considered in this study include axial forces, torques, moments, and voltage resultants prescribed at the cylinder’s ends, as well as body forces, lateral surface shears, voltages, and pressures as long as they can be represented by a power series in the axial coordinate. This problem can be considered as an extension of Saint-Venant and Almansi–Michell problems for elastic bodies to piezoelectric bodies. In this computationally efficient method, the cross-sectional plane is discretized with a meshfree approach, and the solution is obtained analytically with respect to the axial coordinate. A number of examples are provided to demonstrate the veracity and utility of the proposed method.  相似文献   
93.
The shock structure problem is one of the classical problems of fluid mechanics and at least for non-reacting dilute gases it has been considered essentially solved. Here we present a few recent findings, to show that this is not the case. There are still new physical effects to be discovered provided that the numerical technique is general enough to not rule them out a priori. While the results have been obtained for dense fluids, some of the effects might also be observable for shocks in dilute gases.  相似文献   
94.
It is shown that time-dependent temperatures in a transient, conductive system can be approximately modeled by a fractional-order differential equation, the order of which depends on the Biot number. This approximation is particularly suitable for complex shapes for which a first-principles approach is too difficult or computationally time-consuming. Analytical solutions of these equations can be written in terms of the Mittag-Leffler function. The approximation is especially useful if a suitable fractional-order controller is to be designed for the system.  相似文献   
95.
96.
Modelling a complex geometry, such as ice roughness, plays a key role for the computational flow analysis over rough surfaces. This paper presents two enhancement ideas in modelling roughness geometry for local flow analysis over an aerodynamic surface. The first enhancement is use of the leading‐edge region of an airfoil as a perturbation to the parabola surface. The reasons for using a parabola as the base geometry are: it resembles the airfoil leading edge in the vicinity of its apex and it allows the use of a lower apparent Reynolds number. The second enhancement makes use of the Fourier analysis for modelling complex ice roughness on the leading edge of airfoils. This method of modelling provides an analytical expression, which describes the roughness geometry and the corresponding derivatives. The factors affecting the performance of the Fourier analysis were also investigated. It was shown that the number of sine–cosine terms and the number of control points are of importance. Finally, these enhancements are incorporated into an automated grid generation method over the airfoil ice accretion surface. The validations for both enhancements demonstrate that they can improve the current capability of grid generation and computational flow field analysis around airfoils with ice roughness. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
97.
This paper presents the applications of digital image correlation technique to the mesoscopic damage and fracture study of some granular based composite materials including steelfiber reinforced concrete, sandstone and crystal-polymer composite. The deformation fields of the composite materials resulted from stress localization were obtained by the correlation computation of the surface images with loading steps and thus the related damage prediction and fracture parameters were evaluated. The correlation searching could be performed either directly based on the gray levels of the digital images or from the wavelet transform (WT) coefficients of the transform spectrum. The latter was developed by the authors and showed higher resolution and sensitivity to the singularity detection. Because the displacement components came from the rough surfaces of the composite materials without any coats of gratings or fringes of optical interferometry, both surface profiles and the deformation fields of the composites were visualized which was helpful to compare each other to analyze the damage of those heterogeneous materials. The project supported by the National Natural Science Foundation of China (10125211 and 10072002), the Scientific Committee of Yunnan Province for the Program of Steel Fiber Reinforced Concrete, and the Institute of Chemical Materials, CAEP at Mianyang  相似文献   
98.
99.
Dielectric elastomer actuators (DEAs) have received considerable attention recently due to large voltage-induced strains, which can be over 100%. Previously, a large deformation quasi-static model that describes the out-of-plane deformations of clamped diaphragms was derived. The numerical model results compare well with quasi-static experimental results for the same configuration. With relevance to dynamic applications, the time-varying response of initially planar dielectric elastomer membranes configured for out-of-plane deformations has not been reported until now. In this paper, an experimental investigation and analysis of the dynamic response of a dielectric elastomer membrane is reported. The experiments were conducted with prestretched DEAs fabricated from 0.5 mm thick polyacrylate films and carbon grease electrodes. The experiments covered the electromechanical spectrum by investigating membrane response due to (i) a time-varying voltage input and (ii) a time-varying pressure input, resulting in a combined electromechanical loading state in both cases. For the time-varying voltage experiments, the membrane had a prestretch of three and was passively inflated to various predetermined states, and then actuated. The pole strains incurred during the inflation were as high as 25.6%, corresponding to slightly less than a hemispherical state. On actuation, the membrane would inflate further, causing a maximum additional strain of 9.5%. For the time-varying pressure experiments, the prestretched membrane was inflated and deflated mechanically while a constant voltage was applied. The membrane was cycled between various predetermined inflation states, the largest of which was nearly hemispherical, which with an applied constant voltage of 3 kV corresponded to a maximum polar strain of 28%. The results from these experiments reveal that the response of the membrane is a departure from the classical dynamic response of continuum membrane structures. The dynamic response of the membrane is that of a damped system with specific deformation shapes reminiscent of the classical membrane mode shapes but without same-phase oscillation, that is to say all parts of the system do not pass through the equilibrium configuration at the same time. Of particular interest is the ability to excite these deformations through a varying electrical load at constant mechanical pressure.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号