首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2375篇
  免费   55篇
  国内免费   8篇
化学   1382篇
晶体学   10篇
力学   57篇
数学   326篇
物理学   663篇
  2022年   23篇
  2021年   29篇
  2020年   30篇
  2019年   35篇
  2017年   25篇
  2016年   48篇
  2015年   32篇
  2014年   47篇
  2013年   107篇
  2012年   104篇
  2011年   122篇
  2010年   61篇
  2009年   45篇
  2008年   92篇
  2007年   102篇
  2006年   89篇
  2005年   112篇
  2004年   75篇
  2003年   78篇
  2002年   64篇
  2001年   62篇
  2000年   57篇
  1999年   35篇
  1998年   23篇
  1997年   38篇
  1996年   33篇
  1995年   48篇
  1994年   42篇
  1993年   46篇
  1992年   42篇
  1991年   32篇
  1990年   35篇
  1989年   20篇
  1988年   23篇
  1987年   21篇
  1986年   17篇
  1985年   33篇
  1984年   26篇
  1983年   17篇
  1982年   26篇
  1981年   33篇
  1980年   21篇
  1979年   34篇
  1978年   28篇
  1977年   31篇
  1976年   35篇
  1975年   31篇
  1974年   26篇
  1973年   37篇
  1972年   26篇
排序方式: 共有2438条查询结果,搜索用时 31 毫秒
101.
The dehydrogenation reaction of the heptalene-4,5-dimethanols 4a and 4d , which do not undergo the double-bond-shift (DBS) process at ambient temperature, with basic MnO2 in CH2Cl2 at room temperature, leads to the formation of the corresponding heptaleno[1,2-c]furans 6a and 6d , respectively, as well as to the corresponding heptaleno[1,2-c]furan-3-ones 7a and 7d , respectively (cf. Scheme 2 and 8). The formation of both product types necessarily involves a DBS process (cf. Scheme 7). The dehydrogenation reaction of the DBS isomer of 4a , i.e., 5a , with MnO2 in CH2Cl2 at room temperature results, in addition to 6a and 7a , in the formation of the heptaleno[1,2-c]-furan-1-one 8a and, in small amounts, of the heptalene-4,5-dicarbaldehyde 9a (cf. Scheme 3). The benzo[a]heptalene-6,7-dimethanol 4c with a fixed position of the C?C bonds of the heptalene skeleton, on dehydrogenation with MnO2 in CH2Cl2, gives only the corresponding furanone 11b (Scheme 4). By [2H2]-labelling of the methanol function at C(7), it could be shown that the furanone formation takes place at the stage of the corresponding lactol [3-2H2]- 15b (cf. Scheme 6). Heptalene-1,2-dimethanols 4c and 4e , which are, at room temperature, in thermal equilibrium with their corresponding DBS forms 5c and 5e , respectively, are dehydrogenated by MnO2 in CH2Cl2 to give the corresponding heptaleno[1,2-c]furans 6c and 6e as well as the heptaleno[1,2-c]furan-3-ones 7c and 7e and, again, in small amounts, the heptaleno[1,2-c]furan-1-ones 8c and 8e , respectively (cf. Scheme 8). Therefore, it seems that the heptalene-1,2-dimethanols are responsible for the formation of the furan-1-ones (cf. Scheme 7). The methylenation of the furan-3-ones 7a and 7e with Tebbe's reagent leads to the formation of the 3-methyl-substituted heptaleno[1,2-c]furans 23a and 23e , respectively (cf. Scheme 9). The heptaleno[1,2-c]furans 6a, 6d , and 23a can be resolved into their antipodes on a Chiralcel OD column. The (P)-configuration is assigned to the heptaleno[1,2-c]furans showing a negative Cotton effect at ca. 320 nm in the CD spectrum in hexane (cf. Figs. 3–5 as well as Table 7). The (P)-configuration of (–)- 6a is correlated with the established (P)-configuration of the dimethanol (–)- 5a via dehydrogenation with MnO2. The degree of twisting of the heptalene skeleton of 6 and 23 is determined by the Me-substitution pattern (cf. Table 9). The larger the heptalene gauche torsion angles are, the more hypsochromically shifted is the heptalene absorption band above 300 nm (cf. Table 7 and 8, as well as Figs. 6–9).  相似文献   
102.
It is shown that azulene ( 1 ) and dimethyl acetylenedicarboxylate (ADM) in a fourfold molar excess react at 200° in decalin to yield, beside the known heptalene- ( 5 ) and azulene-1,2-dicarboxylates ( 6 ), in an amount of 1.6% tetramethyl (1RS,2RS,5SR,8RS)-tetracyclo[6.2.2.22,501,5]tetradeca-3,6,9,11,13-pentaene-3,4,9,10-tetracarboxylate(‘anti’-7) as a result of a SHOMO (azulene)/LUMO(ADM)-controlled addition of ADM to the seven-membered ring of 1 followed by a Diels-Alder reaction of the so formed tricyclic intermediate 16 (cf. Scheme 3) with a second molecule of ADM. The structure of ‘anti’-7 was confirmed by an X-ray diffraction analysis. Similarly, the thermal reaction of 5,7-dimehtylazulene ( 3 ) with excess ADM in decalin at 120° led to the formation of ca. 1% of ‘anti’- 12 , the 7,12-dimethyl derivative of‘anti’-7, beside of the corresponding heptalene- 10 and azulene-1,2-dicaboxylated (cf Scheme 2). The introduction of Me groups at C(1)and C(3)of azulene ( 1 ) and its 5,7-dimethyl derivative 3 strongly enhance the thermal formation of the corresponding tetracyclic compound. Thus, 1,3-dimethylazulene ( 2 ) in the presence of a sevenfold molar excess of ADM at 200° yielded 20% of ‘anti’- 9 beside an equal amount of dimethyl 3-mehtylazulene-1,2-dicarboxylate ( 8 ;cf. Scheme 1), and 1,3,5,7-tetramethylazulene ( 4 ) with a fourfold molar excess of ADM AT 200° gave a yield of 37% of‘anti’- 15 beside small amount of the corresponding heptalene- 13 and azulene-1,2-dicarboxylates 14 (cf.Scheme 2).  相似文献   
103.
It is shown that azulenes react with dimethyl acetylenedicarboxylate (ADM) in solvents such as toluene, dioxan, or MeCN in the presence of 2 mol-% [RuH2(PPh3)4] already at temperatures as low as 100° and lead to the formation of the corresponding heptalene-1,2-dicarboxylates in excellent yields (Tables 1 and 2). The Ru-catalyzed reaction of ADM with 1-(tert-butyl)-4,6,8-trimethylazulene ( 31 ) takes place even at room temperature, yielding the primary tricyclic addition product 32 and its thermal retro-Diels-Alder product dimethyl 4,6,8-trimethylazulene-1,2-dicarboxylate ( 21 ; Scheme 4). At 100° in MeCN, 32 yields 90% of 21 and only 10% of the corresponding heptalene. These observations demonstrate that [RuH2(PPh3)4] catalyzes the first step of the thermal formation of heptalenes from azulenes and ADM which occurs in apolar solvents such as tetralin or decalin at temperatures > 180° (cf. Scheme 1).  相似文献   
104.
It has been found that dimethyl heptalene-4,5-dicarboxylates, when treated with 4 mol-equiv. of lithiated N,N-dialkylamino methyl sulfones or methyl phenyl sulfone, followed by 4 mol-equiv. of BuLi in THF in the temperature range of ?78 to 20°, give rise to the formation of 3-[(N,N-dialkylamino)sulfonyl]- or 3-(phenylsul-fonyl)benzo[a]heptalene-2,4-diols of. (cf. Scheme 4, and Tables 2 and 3). Accompanying products are 2,4-bis{[(N,N-dialkylamino)sulfonyl]methyl}- or 2,4-bis[(phenylsulfonyl)methyl]-4,10a-dihydro-3H-heptaleno[1,10-bc]furan-3-carboxylates as mixtures of diastereoisomers of. cf. Scheme 4, and (Tables 2 and 3) which are the result of a Michael addition reaction of the lithiated methyl sulfones at C(3) of the heptalene-4,5-dicarboxylates, followed by (sulfonyl)methylation of the methoxycarbonyl group at C(5) and cyclization of. (cf. Scheme 5). It is assumed that the benzo[a]heptalene formation is due to (sulfonyl)methylation of both methoxycarbonyl groups of the heptalene-4,5-dicarboxylates of. (cf. Schemes 6 and 8). The resulting bis-enolates 35 are deprotonated further. The thus formed tris-anions 36 can then cyclize to corresponding tris-anions 37 of cyclopenta[d]heptalenes which, after loss of N,N-dialkylamido sulfite or phenyl sulfinate, undergo a ring-enlargement reaction by 1,2-C migration finally leading to the observed benzo[a]heptalenes of. (cf. Schemes 8 and 9). The structures of the new product types have been finally established by X-ray crystal-structure analyses (cf. Figs. 1 and 2 as well as Exper. Part).  相似文献   
105.
Some Irradiation Experiments with 2, 1-Benzisothiazoles 2, 1-Benzisothiazole ( 1 ) on irradiation with a mercury high-pressure lamp in benzene/diethylamine yields, after acetylation, 2-acetylamino-benzaldehyde ( 3 ; Scheme 1). Similarly, irradiation of 3-chloro-2, 1-benzisothiazole ( 2 ) in benzene/diethylamine leads to a mixture of 3-dimethylamino-2, 1-benzisothiazole ( 6a ) and N, N-diethyl-thioanthranilamide ( 7a ; Scheme 2). Benzisothiazole 6a , on irradiation, is not transformed into 7a . On the other hand, when 2 is irradiated in methanol a mixture of 3-methoxy-2, 1-benzisothiazole ( 4a ) and methyl anthranilate ( 5a ; Scheme 2) is obtained. In this case, 4a on irradiation in methanol or ethanol also yields 5a . No exchange of the methoxy group in 4a is observed when the irradiation is performed in ethanolic solution. Thus, 2, 1-benzisothiazoles 1 , 2 and 4a react photochemically by N,S-bond cleavage and hydrogen-atom abstraction from the solvent (Scheme 3). 3-Chloro-2, 1-benzisothiazole ( 2 ) shows a second photoreaction, i.e. nucleophilic exchange of the chloro substituent by methanol or diethyl amine. The latter reaction can also be observed thermally, e.g. in boiling methanol in the presence of methoxide ions.  相似文献   
106.
It is shown that (−)-(S)-N,N-dimethyl-2-(1′-methylallyl)aniline ((−)-(S)- 4 ), on direct irradiation in MeCN at 20°, undergoes in its lowest-lying triplet state an aromatic di-π-methane (ADPM) rearrangement to yield (−)-(1′R,2′R)- and (+)-(1′R,2′S)-N,N-dimethyl-2-(2-methylcyclopropyl)aniline ((−)-trans- and (+)-cis- 7 ) in an initial trans/cis ratio of 4.71 ± 0.14 and in optical yields of 28.8 ± 5.2% and 15 ± 5%, respectively. The ADPM rearrangement of (−)-(S)- 4 to the trans- and cis-configurated products occurs with a preponderance of the path leading to retention of configuration at the pivot atom (C(1′) in the reactant and C(2′) in the products) for (−)-trans- 7 and to inversion of configuration for (+)-cis- 7 , respectively. The results can be rationalized by assuming reaction paths which involve the occurrence of discrete 1,4- and 1,3-diradicals (cf. Schemes 10, 12, and 13). A general analysis of such ADPM rearrangements which allows the classification of these photochemical reactions in terms of borderline cases is presented (Scheme 14). It is found that the optical yields in these ‘step-by-step’ rearrangements are determined by the first step, i.e. by the disrotatory bond formation between C(2) of the aromatic moiety and C(2′) of the allylic side chain leading to the generation of the 1,4-diradicals. Moderation of the optical yields can occur in the ring closure of the 1,3-diradicals to the final products, which may take place with different trans/cis-ratios for the individual 1,3-diradicals. Compounds (−)-trans- 7 as well as (+)-cis- 7 easily undergo the well-known photochemical trans/cis-isomerization. It mainly leads to racemization. However, a small part of the molecules shows trans/cis-isomerization with inversion of configuration at C(1′), which is best explained by a photochemical cleavage of the C(1′)–C(3′) bond.  相似文献   
107.
108.
On the Photochemistry of 1, 2-Benzisoxazoles in Strongly Acidic Solution The 1, 2-benzisoxazoles 1a, 1b and 1d when dissolved in 96% sulfuric acid and irradiated through a quartz filter with a mercury high-presure lamp yield, after work-up, mixtures of 2, 5- and 2, 3-dihydroxy-acylbenzenes ( 2 and 3 , respectively; cf. Schemes 1 and 3 and Table 1). Irradiation of 3, 5-dimethyl-1, 2-benzisoxazole ( 1c ) in 96% sulfuric acid leads to the formation of 2, 3-dihydroxy-5-methyl-acetophenone ( 3c ) in only 6% yield (cf. Table 1). It is assumed that the 1, 2-benzisoxazolium ions react in the excited singlet state by heterolytic cleavage of the N, O-bond to yield the corresponding aryl oxenium ions 7 in the singlet ground state (see Scheme 5). Reaction of 7 with HSO 4 ? ions, present in 96% sulfuric acid, yields, after hydrolysis, the dihydroxy compounds 2 and 3 . Photolysis of 3-methyl-1, 2-benzisoxazole ( 1b ) in diluted sulfuric acid (0,5 to 9 M ) in methanol or water leads only to the formation of 2-amino-phenol ( 6 ; see Scheme 3), presumable via photo-isomerization of 1b to 2-methylbenzoxazole ( 5b ) which then is hydrolyzed to give 6 .  相似文献   
109.
It is shown that the thermal electrocyclic ring-closure reaction of 1,2-di[(E)-prop-1-enyl]benzene to yield 2,3-dimethylnaphthalene (cf. Scheme 1) [10] can successfully be applied also to the synthesis of benz[a]azulenes (cf. Schemes 2 and 3). Starting materials are methyl 4,6,8-trimethylazulen-2-yl ketone ( 6 ) and the corresponding 2-carbaldehyde 5 , which, in a Horner-Emmons reaction, are transformed into the (azulen-2-yl)-acrylates (E)- 8 and (E)- 7 , respectively. Vilsmeier formylation of these compounds, followed by the Horner-Emmons reaction leads to the formation of the bisacrylates (E,E)- 11 and (E,E)- 12 , respectively. In an alternative reaction, (E)- 8 , on treatment with dimethyl acetylenedicarboxylate (ADM) in the presence of [RuH2(PPh3)4], can be transformed into the methoxycarbonyl-substituted bisacrylates (E,E)- and (E,Z)- 17 . All three bisacrylates, on heating at 180–190° in p-cymene, undergo cyclization to yield the corresponding dihydrobenz[a]azulenes 13 , 14 , and 18 , respectively, which could easily be dehydrogenated on heating in the presence of Pd/C. The new benz[a]azulenes 15 , 16 , and 19 are fully characterized.  相似文献   
110.
研究了1-正-辛基-3,3-二甲基-吲哚啉-2,2′-螺-5′,6′-(2-溴-4-硝基-苯并)吡喃, 1-正-辛基-3,3-二甲基-吲哚啉-2,2′-螺-5′,6′-(4-硝基-苯并)吡喃, 1-正-辛基-3,3-二甲基-吲哚啉-2,2′-螺-5′,6′-(2,4-二硝基-苯并)吡喃及1-正-辛基-3,3-二甲基-吲哚啉-2,2′螺-5′6′-(2-氯-4-硝基-苯并)吡喃在环已烷和甲苯溶液中光致开环过程的瞬态吸收光谱。观察到具有较长寿命的中间体及聚集体的存在。初步提出异构化反应过程的机制中既包含有三重态过程, 也有单重态参与。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号